Burhat Order

Burhat Order (back to Data page)

定義:

$w$ is one line permutation in $\mathcal{S}_n$ google colab

目錄:

$l_O$

n total $l_o$ numbers
3 6 01
14
21
4 24 01
18
26
38
41
5 120 01
112
223
348
423
512
61
6 720 01
116
259
3137
4147
5147
6137
759
816
91
7 5040 01
120
2113
3300
4631
5832
61246
7832
8631
9300
10113
1120
121
8 40320 01
124
2183
3620
41878
52956
65481
75616
86802
95616
105481
112956
121878
13620
14183
1524
161



$l_E$

* $[reduced] = \frac{[number]}{1^{st}~ number~ of~ l_o ~in ~each ~n}$

n total $l_o$ numbers reduced
3 6 031
131
4 24 061
1122
261
5 120 0101
1303
2404
3303
4101
6 720 0201
1804
21608
320010
41608
5804
6201
7 5040 0351
11755
245513
380523
4105030
5105030
680523
745513
81755
9351
8 40320 0701
14206
2133019
3294042
4497071
5672096
67420106
7672096
8497071
9294042
10133019
114206
12701
9 362880 01261
18827
2327626
3856868
417514139
529484234
642084334
751786411
855440440
951786411
1042084334
1129484234
1217514139
13856868
14327626
158827
161261
10 3628800 02521
120168
2856834
325704102
460732241
5119448474
6201852801
72988721186
83926161558
94611601830
104863601930
114611601830
123926161558
132988721186
14201852801
15119448474
1660732241
1725704102
18856834
1920168
202521



$l_{ex}$

* $[reduced] = \frac{[number]}{(n-1)!!}$

n total $l_{ex}$ numbers reduced
3 6 021
121
221
4 24 031
162
262
362
431
5 120 081
1162
2243
3243
4243
5162
681
6 720 0151
1453
2755
31057
41208
51208
61057
7755
8453
9151
7 5040 0481
11443
22886
34329
457612
567214
672015
767214
857612
94329
102886
111443
12481
8 403420 01051
14204
29459
3168016
4252024
5336032
6409539
7462044
8483046
9462044
10409539
11336032
12252024
13168016
149459
154204
161051
9 362880 03841
115364
2384010
3729619
41190431
51728045
62304060
72841674
83302486
93609694
103724897
113609694
123302486
132841674
142304060
151728045
161190431
17729619
18384010
1915364
203841
10 3628800 09451
147255
21323014
32835030
45103054
58127086
6118125125
7159705169
8203175215
9244755259
10280665297
11307125325
12321300340
13321300340
14307125325
15280665297
16244755259
17203175215
18159705169
19118125125
208127086
215103054
222835030
231323014
2447255
259451



$l_{xe}$

* $[reduced] = \frac{[number]}{(n-1)!!}$ if n is odd number
* $[reduced] = \frac{[number]}{(n)!!}$ if n is even number

n total $l_{xe}$ numbers reduced
3 6 021
121
221
4 24 081
181
281
5 120 081
1162
2243
3243
4243
5162
681
6 720 0481
1962
21443
31443
41443
5962
6481
7 5040 0481
11443
22886
34329
457612
567214
672015
767214
857612
94329
102886
111443
12481
8 40320 03841
111523
223046
334569
4460812
5537614
6576015
7537614
8460812
934569
1023046
1111523
123841
9 362880 03841
115364
2384010
3729619
41190431
51728045
62304060
72841674
83302486
93609694
103724897
113609694
123302486
132841674
142304060
151728045
161190431
17729619
18384010
1915364
203841
10 3628800 038401
1153604
23840010
37296019
411904031
517280045
623040060
728416074
833024086
936096094
1037248097
1136096094
1233024086
1328416074
1423040060
1517280045
1611904031
177296019
183840010
19153604
2038401



$l_{ee}$

n total $l_{ee}$ numbers