Burhat Order
定義:
$w$ is one line permutation in $\mathcal{S}_n$
- $l_O(w)= \Big| \{ ( w(i), w(j) ) \mid1\leq i < j \leq n, w(i)> w(j), i \not\equiv j ~ (mod ~2) \} \Big|$
- $l_E(w)= \Big| \{ ( w(i), w(j) ) \mid1\leq i < j \leq n, w(i)> w(j), i \equiv j ~(mod ~2) \} \Big|$
- $l_{ex}(w)= \Big| \{ ( w(i), w(j) ) \mid1\leq i < j \leq n, w(i)> w(j), i \equiv 0 ~(mod ~2) \} \Big|$
- $l_{xe}(w)= \Big| \{ ( w(i), w(j) ) \mid1\leq i < j \leq n, w(i)> w(j), j \equiv 0 ~(mod ~2) \} \Big|$
- $l_{ee}(w)= \Big| \{ ( w(i), w(j) ) \mid1\leq i < j \leq n, w(i)> w(j), i \equiv j \equiv 0 ~(mod ~2) \} \Big|$
google colab
目錄:
$l_O$
n | total | $l_o$ | numbers |
3 |
6 |
0 | 1 |
1 | 4 |
2 | 1 |
4 |
24 |
0 | 1 |
1 | 8 |
2 | 6 |
3 | 8 |
4 | 1 |
5 |
120 |
0 | 1 |
1 | 12 |
2 | 23 |
3 | 48 |
4 | 23 |
5 | 12 |
6 | 1 |
6 |
720 |
0 | 1 |
1 | 16 |
2 | 59 |
3 | 137 |
4 | 147 |
5 | 147 |
6 | 137 |
7 | 59 |
8 | 16 |
9 | 1 |
7 |
5040 |
0 | 1 |
1 | 20 |
2 | 113 |
3 | 300 |
4 | 631 |
5 | 832 |
6 | 1246 |
7 | 832 |
8 | 631 |
9 | 300 |
10 | 113 |
11 | 20 |
12 | 1 |
8 |
40320 |
0 | 1 |
1 | 24 |
2 | 183 |
3 | 620 |
4 | 1878 |
5 | 2956 |
6 | 5481 |
7 | 5616 |
8 | 6802 |
9 | 5616 |
10 | 5481 |
11 | 2956 |
12 | 1878 |
13 | 620 |
14 | 183 |
15 | 24 |
16 | 1 |
$l_E$
* $[reduced] = \frac{[number]}{1^{st}~ number~ of~ l_o ~in ~each ~n}$
n | total | $l_o$ | numbers | reduced |
3 |
6 |
0 | 3 | 1 |
1 | 3 | 1 |
4 |
24 |
0 | 6 | 1 |
1 | 12 | 2 |
2 | 6 | 1 |
5 |
120 |
0 | 10 | 1 |
1 | 30 | 3 |
2 | 40 | 4 |
3 | 30 | 3 |
4 | 10 | 1 |
6 |
720 |
0 | 20 | 1 |
1 | 80 | 4 |
2 | 160 | 8 |
3 | 200 | 10 |
4 | 160 | 8 |
5 | 80 | 4 |
6 | 20 | 1 |
7 |
5040 |
0 | 35 | 1 |
1 | 175 | 5 |
2 | 455 | 13 |
3 | 805 | 23 |
4 | 1050 | 30 |
5 | 1050 | 30 |
6 | 805 | 23 |
7 | 455 | 13 |
8 | 175 | 5 |
9 | 35 | 1 |
8 |
40320 |
0 | 70 | 1 |
1 | 420 | 6 |
2 | 1330 | 19 |
3 | 2940 | 42 |
4 | 4970 | 71 |
5 | 6720 | 96 |
6 | 7420 | 106 |
7 | 6720 | 96 |
8 | 4970 | 71 |
9 | 2940 | 42 |
10 | 1330 | 19 |
11 | 420 | 6 |
12 | 70 | 1 |
9 |
362880 |
0 | 126 | 1 |
1 | 882 | 7 |
2 | 3276 | 26 |
3 | 8568 | 68 |
4 | 17514 | 139 |
5 | 29484 | 234 |
6 | 42084 | 334 |
7 | 51786 | 411 |
8 | 55440 | 440 |
9 | 51786 | 411 |
10 | 42084 | 334 |
11 | 29484 | 234 |
12 | 17514 | 139 |
13 | 8568 | 68 |
14 | 3276 | 26 |
15 | 882 | 7 |
16 | 126 | 1 |
10 |
3628800 |
0 | 252 | 1 |
1 | 2016 | 8 |
2 | 8568 | 34 |
3 | 25704 | 102 |
4 | 60732 | 241 |
5 | 119448 | 474 |
6 | 201852 | 801 |
7 | 298872 | 1186 |
8 | 392616 | 1558 |
9 | 461160 | 1830 |
10 | 486360 | 1930 |
11 | 461160 | 1830 |
12 | 392616 | 1558 |
13 | 298872 | 1186 |
14 | 201852 | 801 |
15 | 119448 | 474 |
16 | 60732 | 241 |
17 | 25704 | 102 |
18 | 8568 | 34 |
19 | 2016 | 8 |
20 | 252 | 1 |
$l_{ex}$
* $[reduced] = \frac{[number]}{(n-1)!!}$
n | total | $l_{ex}$ | numbers | reduced |
3 |
6 |
0 | 2 | 1 |
1 | 2 | 1 |
2 | 2 | 1 |
4 |
24 |
0 | 3 | 1 |
1 | 6 | 2 |
2 | 6 | 2 |
3 | 6 | 2 |
4 | 3 | 1 |
5 |
120 |
0 | 8 | 1 |
1 | 16 | 2 |
2 | 24 | 3 |
3 | 24 | 3 |
4 | 24 | 3 |
5 | 16 | 2 |
6 | 8 | 1 |
6 |
720 |
0 | 15 | 1 |
1 | 45 | 3 |
2 | 75 | 5 |
3 | 105 | 7 |
4 | 120 | 8 |
5 | 120 | 8 |
6 | 105 | 7 |
7 | 75 | 5 |
8 | 45 | 3 |
9 | 15 | 1 |
7 |
5040 |
0 | 48 | 1 |
1 | 144 | 3 |
2 | 288 | 6 |
3 | 432 | 9 |
4 | 576 | 12 |
5 | 672 | 14 |
6 | 720 | 15 |
7 | 672 | 14 |
8 | 576 | 12 |
9 | 432 | 9 |
10 | 288 | 6 |
11 | 144 | 3 |
12 | 48 | 1 |
8 |
403420 |
0 | 105 | 1 |
1 | 420 | 4 |
2 | 945 | 9 |
3 | 1680 | 16 |
4 | 2520 | 24 |
5 | 3360 | 32 |
6 | 4095 | 39 |
7 | 4620 | 44 |
8 | 4830 | 46 |
9 | 4620 | 44 |
10 | 4095 | 39 |
11 | 3360 | 32 |
12 | 2520 | 24 |
13 | 1680 | 16 |
14 | 945 | 9 |
15 | 420 | 4 |
16 | 105 | 1 |
9 |
362880 |
0 | 384 | 1 |
1 | 1536 | 4 |
2 | 3840 | 10 |
3 | 7296 | 19 |
4 | 11904 | 31 |
5 | 17280 | 45 |
6 | 23040 | 60 |
7 | 28416 | 74 |
8 | 33024 | 86 |
9 | 36096 | 94 |
10 | 37248 | 97 |
11 | 36096 | 94 |
12 | 33024 | 86 |
13 | 28416 | 74 |
14 | 23040 | 60 |
15 | 17280 | 45 |
16 | 11904 | 31 |
17 | 7296 | 19 |
18 | 3840 | 10 |
19 | 1536 | 4 |
20 | 384 | 1 |
10 |
3628800 |
0 | 945 | 1 |
1 | 4725 | 5 |
2 | 13230 | 14 |
3 | 28350 | 30 |
4 | 51030 | 54 |
5 | 81270 | 86 |
6 | 118125 | 125 |
7 | 159705 | 169 |
8 | 203175 | 215 |
9 | 244755 | 259 |
10 | 280665 | 297 |
11 | 307125 | 325 |
12 | 321300 | 340 |
13 | 321300 | 340 |
14 | 307125 | 325 |
15 | 280665 | 297 |
16 | 244755 | 259 |
17 | 203175 | 215 |
18 | 159705 | 169 |
19 | 118125 | 125 |
20 | 81270 | 86 |
21 | 51030 | 54 |
22 | 28350 | 30 |
23 | 13230 | 14 |
24 | 4725 | 5 |
25 | 945 | 1 |
$l_{xe}$
* $[reduced] = \frac{[number]}{(n-1)!!}$ if n is odd number
* $[reduced] = \frac{[number]}{(n)!!}$ if n is even number
n | total | $l_{xe}$ | numbers | reduced |
3 |
6 |
0 | 2 | 1 |
1 | 2 | 1 |
2 | 2 | 1 |
4 |
24 |
0 | 8 | 1 |
1 | 8 | 1 |
2 | 8 | 1 |
5 |
120 |
0 | 8 | 1 |
1 | 16 | 2 |
2 | 24 | 3 |
3 | 24 | 3 |
4 | 24 | 3 |
5 | 16 | 2 |
6 | 8 | 1 |
6 |
720 |
0 | 48 | 1 |
1 | 96 | 2 |
2 | 144 | 3 |
3 | 144 | 3 |
4 | 144 | 3 |
5 | 96 | 2 |
6 | 48 | 1 |
7 |
5040 |
0 | 48 | 1 |
1 | 144 | 3 |
2 | 288 | 6 |
3 | 432 | 9 |
4 | 576 | 12 |
5 | 672 | 14 |
6 | 720 | 15 |
7 | 672 | 14 |
8 | 576 | 12 |
9 | 432 | 9 |
10 | 288 | 6 |
11 | 144 | 3 |
12 | 48 | 1 |
8 |
40320 |
0 | 384 | 1 |
1 | 1152 | 3 |
2 | 2304 | 6 |
3 | 3456 | 9 |
4 | 4608 | 12 |
5 | 5376 | 14 |
6 | 5760 | 15 |
7 | 5376 | 14 |
8 | 4608 | 12 |
9 | 3456 | 9 |
10 | 2304 | 6 |
11 | 1152 | 3 |
12 | 384 | 1 |
9 |
362880 |
0 | 384 | 1 |
1 | 1536 | 4 |
2 | 3840 | 10 |
3 | 7296 | 19 |
4 | 11904 | 31 |
5 | 17280 | 45 |
6 | 23040 | 60 |
7 | 28416 | 74 |
8 | 33024 | 86 |
9 | 36096 | 94 |
10 | 37248 | 97 |
11 | 36096 | 94 |
12 | 33024 | 86 |
13 | 28416 | 74 |
14 | 23040 | 60 |
15 | 17280 | 45 |
16 | 11904 | 31 |
17 | 7296 | 19 |
18 | 3840 | 10 |
19 | 1536 | 4 |
20 | 384 | 1 |
10 |
3628800 |
0 | 3840 | 1 |
1 | 15360 | 4 |
2 | 38400 | 10 |
3 | 72960 | 19 |
4 | 119040 | 31 |
5 | 172800 | 45 |
6 | 230400 | 60 |
7 | 284160 | 74 |
8 | 330240 | 86 |
9 | 360960 | 94 |
10 | 372480 | 97 |
11 | 360960 | 94 |
12 | 330240 | 86 |
13 | 284160 | 74 |
14 | 230400 | 60 |
15 | 172800 | 45 |
16 | 119040 | 31 |
17 | 72960 | 19 |
18 | 38400 | 10 |
19 | 15360 | 4 |
20 | 3840 | 1 |
$l_{ee}$