Eulerian numbers with k des
定義:
(from "On the joint distribution of descents and signs of permutations")
- des($\omega$) = # $\{1 \leq i \leq n-1 \mid \omega(i) > \omega(i+1) \}$
- $\genfrac{<}{>}{0pt}{}{n}{k} =$ # $\{ \omega \in \mathbb{S}_n \mid des(\omega) =k-1\}$
- sign: The sign of a permutation is 1 if it can be written as a product of an even number of transpositions; otherwise the sign is −1. The sign of a permutation is well-defined, and denoted by sgn($\omega$). It is also related to other statistics for permutations, e.g.,
$sgn(\omega) = (−1)^{n−c(\omega)} = (−1)^{inv(\omega)}$ ,
where $c(\omega)$ is the number of cycles of $\omega$, and $inv(\omega)$ is the number of inversions of $\omega$.
- $\mathbb{S}_n^+$ denote the set of permutations of positive sign (also known as “even” permutations), and let $\mathbb{S}_n^- = \mathbb{S}_n -\mathbb{S}_n^+$denote the set of permutations with negative sign
- $\genfrac{<}{>}{0pt}{}{n}{k}^+ =$ # $\{ \omega \in \mathbb{S}_n^+ \mid des(\omega) =k-1\}$, $\genfrac{<}{>}{0pt}{}{n}{k}^- =$ # $\{ \omega \in \mathbb{S}_n^- \mid des(\omega) =k-1\}$
the type B Eulerian numbers with k des
google colab
Triangle of the Eulerian numbers $\genfrac{<}{>}{0pt}{}{n}{k}$
n\k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 1 |
2 | 1 | 1 |
3 | 1 | 4 | 1
|
4 | 1 | 11 | 11 | 1 |
5 | 1 | 26 | 66 | 26 | 1 |
6 | 1 | 57 | 302 | 302 | 57 | 1 |
7 | 1 | 120 | 1,191 | 2,416 | 1,191 | 120 | 1 |
8 | 1 | 247 | 4,293 | 15,619 | 15,619 | 4,293 | 247 | 1 |
9 | 1 | 502 | 14,608 | 88,234 | 156,190 | 88,234 | 14,608 | 502 | 1 |
10 | 1 | 1,013 | 47,840 | 455,192 | 1,310,354 | 1,310,354 | 455,192 | 47,840 | 1,013 | 1 |
11 | 1 | 2,036 | 152,637 | 2,203,488 | 9,738,114 | 15,724,248 | 9,738,114 | 2,203,488 | 152,637 | 2,036 | 1 |
Triangle of the positive Eulerian numbers $\genfrac{<}{>}{0pt}{}{n}{k}^+$
n\k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 1 |
2 | 1 | 0 |
3 | 1 | 2 | 0 |
4 | 1 | 5 | 5 | 1 |
5 | 1 | 14 | 20 | 14 | 1 |
6 | 1 | 29 | 147 | 155 | 28 | 0 |
7 | 1 | 64 | 586 | 1208 | 605 | 56 | 0 |
8 | 1 | 127 | 2133 | 7819 | 7819 | 2133 | 127 | 1 |
9 | 1 | 262 | 7288 | 44074 | 78190 | 44074 | 7288 | 262 | 1 |
10 | 1 | 517 | 23893 | 227569 | 655315 | 655039 | 227623 | 23947 | 496 | 0 |
11 | 1 | 1044 | 76332 | 1101420 | 4869558 | 7862124 | 4868556 | 1102068 | 76305 | 992 | 0 |
Triangle of the negative Eulerian numbers $\genfrac{<}{>}{0pt}{}{n}{k}^-$
n\k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 0 |
2 | 0 | 1 |
3 | 0 | 2 | 1 |
4 | 0 | 6 | 6 | 0 |
5 | 0 | 12 | 36 | 12 | 0 |
6 | 0 | 28 | 255 | 247 | 29 | 1 |
7 | 0 | 56 | 605 | 1208 | 586 | 64 | 1 |
8 | 0 | 120 | 2160 | 7800 | 7800 | 2160 | 120 | 0 |
9 | 0 | 240 | 7320 | 44160 | 78000 | 44160 | 7320 | 240 | 0 |
10 | 0 | 496 | 23947 | 227623 | 655039 | 655315 | 227569 | 23893 | 517 | 1 |
11 | 0 | 992 | 76305 | 1102068 | 4868556 | 7862124 | 4869558 | 1101420 | 76332 | 1044 | 1 |