Multi-ap_lap

ap, lap Number of Multi-Set (back to Data page)

定義:


The statistic of [ap, lap] for $\mathcal{Q}_n$ in link

google colab

目錄:


$ap(\pi)$, for $\pi \in \mathcal{S}_{ \{1, 1, 2, 2, ...., n, n\} }$

For $Ap_n(x)=\sum^n_{i=0}a_{n,i}x^i$, where $a_{n,i}$ is the number of $\pi \in \mathcal{S}_{ \{1, 1, 2, 2, ...., n, n\} }$ such that $ap(\pi)=i$.
$Ap_1(x)=1$,
$Ap_2(x)=4+2 x$,
$Ap_3(x)=58+28x+4x^2$,
$Ap_4(x)=1600+768x+144x^2+8x^3$,
$Ap_5(x)=71296+ 34496 x+ 6936 x^2+ 656 x^3+ 16 x^4$,
$Ap_6(x)= 4675744 + 2274256 x+ 478336 x^2+ 53216 x^3+2816 x^4 + 32 x^5$,

n total numbers $ap(\pi)$
1 1 1 0
2 6 4 0
2 1
3 90 58 0
28 1
4 2
4 2520 1600 0
768 1
144 2
8 3
5 113400 71296 0
34496 1
6936 2
656 3
16 4
6 7484400 4675744 0
2274256 1
478336 2
53216 3
2816 4
32 5

( $ap(\pi),lap(\pi)$ ), for $\pi \in \mathcal{S}_{ \{1, 1, 2, 2, ...., n, n\} }$

n total numbers $ap(\pi)$ $lap(\pi)$
1 1 1 0 1
2 6 1 1 2
1 1 1
1 0 1
3 0 0
3 90 1 2 3
3 2 2
7 1 2
21 1 1
10 0 1
48 0 0
4 2520 1 3 4
7 3 3
29 2 3
115 2 2
119 1 2
649 1 1
211 0 1
1389 0 0
5 113400 1 4 5
15 4 4
101 3 4
555 3 3
951 2 3
5985 2 2
4091 1 2
30405 1 1
7456 0 1
63840 0 0
6 7484400 1 5 6
31 5 5
327 4 5
2489 4 4
6332 3 4
46884 3 3
51032 2 3
427304 2 2
217827 1 2
2056429 1 1
404881 0 1
4270863 0 0


$ap(\pi)$, for $\pi \in \mathcal{S}_M$, where $M$ is $[n]$ repeated 3 times.

For $Ap_n(x)=\sum^n_{i=0}a_{n,i}x^i$, where $a_{n,i}$ is the number of $\pi \in \mathcal{S}_M$ such that $ap(\pi)=i$.
$Ap_1(x)= 1 $,
$Ap_2(x)= 17 + 3 x$,
$Ap_3(x)= 1509 + 162 x+ 9 x^2$,
$Ap_4(x)= 340593 + 27801 x+ 1179 x^2+ 27 x^3$,

n total numbers $ap(\pi)$
1 1 1 0
2 20 17 0
3 1
3 1680 1509 0
162 1
9 2
4 369600 340593 0
27801 1
1179 2
27 3