Stirling Permutation

(1)-Stirling Permutation, asc, des, plat 的統計量 (back to Data page)

定義:


Google Colab
$$ C_2(x,y,z)=x^{2} y z + x y^{2} z $$ \begin{align*} z &: x^{2} y + x y^{2} \end{align*}

$$ C_3(x,y,z)=x^{3} y^{2} z + x^{3} y z^{2} + x^{2} y^{3} z + 4 x^{2} y^{2} z^{2} + x y^{3} z^{2} $$ \begin{align*} z^2 &: x^{3} y + 4 x^{2} y^{2} + x y^{3}\\ z &: x^{3} y^{2} + x^{2} y^{3} \end{align*}

$$ C_4(x,y,z)=x^{4} y^{3} z + 4 x^{4} y^{2} z^{2} + x^{4} y z^{3} + x^{3} y^{4} z + 14 x^{3} y^{3} z^{2} + 11 x^{3} y^{2} z^{3} + 4 x^{2} y^{4} z^{2} + 11 x^{2} y^{3} z^{3} + x y^{4} z^{3} $$ \begin{align*} z^3 &: x^{4} y + 11 x^{3} y^{2} + 11 x^{2} y^{3} + x y^{4}\\ z^2 &: 4 x^{4} y^{2} + 14 x^{3} y^{3} + 4 x^{2} y^{4}\\ z &: x^{4} y^{3} + x^{3} y^{4} \end{align*}

$$ C_5(x,y,z)=x^{5} y^{4} z + 11 x^{5} y^{3} z^{2} + 11 x^{5} y^{2} z^{3} + x^{5} y z^{4} + x^{4} y^{5} z + 36 x^{4} y^{4} z^{2} + 91 x^{4} y^{3} z^{3} + 26 x^{4} y^{2} z^{4} + 11 x^{3} y^{5} z^{2} + 91 x^{3} y^{4} z^{3} + 66 x^{3} y^{3} z^{4} + 11 x^{2} y^{5} z^{3} + 26 x^{2} y^{4} z^{4} + x y^{5} z^{4} $$ \begin{align*} z^4 &: x^{5} y + 26 x^{4} y^{2} + 66 x^{3} y^{3} + 26 x^{2} y^{4} + x y^{5}\\ z^3 &: 11 x^{5} y^{2} + 91 x^{4} y^{3} + 91 x^{3} y^{4} + 11 x^{2} y^{5}\\ z^2 &: 11 x^{5} y^{3} + 36 x^{4} y^{4} + 11 x^{3} y^{5}\\ z &: x^{5} y^{4} + x^{4} y^{5} \end{align*}

$$ C_6(x,y,z)=x^{6} y^{5} z + 26 x^{6} y^{4} z^{2} + 66 x^{6} y^{3} z^{3} + 26 x^{6} y^{2} z^{4} + x^{6} y z^{5} + x^{5} y^{6} z + 82 x^{5} y^{5} z^{2} + 472 x^{5} y^{4} z^{3} + 432 x^{5} y^{3} z^{4} + 57 x^{5} y^{2} z^{5} + 26 x^{4} y^{6} z^{2} + 472 x^{4} y^{5} z^{3} + 992 x^{4} y^{4} z^{4} + 302 x^{4} y^{3} z^{5} + 66 x^{3} y^{6} z^{3} + 432 x^{3} y^{5} z^{4} + 302 x^{3} y^{4} z^{5} + 26 x^{2} y^{6} z^{4} + 57 x^{2} y^{5} z^{5} + x y^{6} z^{5} $$ \begin{align*} z^5 &: x^{6} y + 57 x^{5} y^{2} + 302 x^{4} y^{3} + 302 x^{3} y^{4} + 57 x^{2} y^{5} + x y^{6}\\ z^4 &: 26 x^{6} y^{2} + 432 x^{5} y^{3} + 992 x^{4} y^{4} + 432 x^{3} y^{5} + 26 x^{2} y^{6}\\ z^3 &: 66 x^{6} y^{3} + 472 x^{5} y^{4} + 472 x^{4} y^{5} + 66 x^{3} y^{6}\\ z^2 &: 26 x^{6} y^{4} + 82 x^{5} y^{5} + 26 x^{4} y^{6}\\ z &: x^{6} y^{5} + x^{5} y^{6} \end{align*}

$$ C_7(x,y,z)=x^{7} y^{6} z + 57 x^{7} y^{5} z^{2} + 302 x^{7} y^{4} z^{3} + 302 x^{7} y^{3} z^{4} + 57 x^{7} y^{2} z^{5} + x^{7} y z^{6} + x^{6} y^{7} z + 176 x^{6} y^{6} z^{2} + 1982 x^{6} y^{5} z^{3} + 4012 x^{6} y^{4} z^{4} + 1737 x^{6} y^{3} z^{5} + 120 x^{6} y^{2} z^{6} + 57 x^{5} y^{7} z^{2} + 1982 x^{5} y^{6} z^{3} + 8688 x^{5} y^{5} z^{4} + 7638 x^{5} y^{4} z^{5} + 1191 x^{5} y^{3} z^{6} + 302 x^{4} y^{7} z^{3} + 4012 x^{4} y^{6} z^{4} + 7638 x^{4} y^{5} z^{5} + 2416 x^{4} y^{4} z^{6} + 302 x^{3} y^{7} z^{4} + 1737 x^{3} y^{6} z^{5} + 1191 x^{3} y^{5} z^{6} + 57 x^{2} y^{7} z^{5} + 120 x^{2} y^{6} z^{6} + x y^{7} z^{6} $$ \begin{align*} z^6 &: x^{7} y + 120 x^{6} y^{2} + 1191 x^{5} y^{3} + 2416 x^{4} y^{4} + 1191 x^{3} y^{5} + 120 x^{2} y^{6} + x y^{7}\\ z^5 &: 57 x^{7} y^{2} + 1737 x^{6} y^{3} + 7638 x^{5} y^{4} + 7638 x^{4} y^{5} + 1737 x^{3} y^{6} + 57 x^{2} y^{7}\\ z^4 &: 302 x^{7} y^{3} + 4012 x^{6} y^{4} + 8688 x^{5} y^{5} + 4012 x^{4} y^{6} + 302 x^{3} y^{7}\\ z^3 &: 302 x^{7} y^{4} + 1982 x^{6} y^{5} + 1982 x^{5} y^{6} + 302 x^{4} y^{7}\\ z^2 &: 57 x^{7} y^{5} + 176 x^{6} y^{6} + 57 x^{5} y^{7}\\ z &: x^{7} y^{6} + x^{6} y^{7} \end{align*}