Chapter 3
The Master Theorem

3.1 Introduction and Commentary
One of MacMahon’s most surprising and valuable contributions to
combinatorics was his discovery of the following.
Master Theorem. The coeflicient of X' X%2 ... XPr in the product of
linear forms
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is identical with the coefficient of X' X52 ... XPnin
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where A(;) is our special notation for the doubly subscripted coefficient 4.

This theorem is studied in great detail in [45], and MacMahon’s moti-
vation to do so may be clearly seen in his first memoir on compositions [42].
In fact, we find the most extensive examples of the power and usefulness of
the Master Theorem in these two papers, where MacMahon applies his result
to numerous permutation problems.

A number of proofs of the Master Theorem have been given since
MacMahon’s original proof. Probably the most important contribution was
made by D. Foata (1965) who explained, in his own proof, the real com-
binatorial significance of the Master Theorem. Subsequently, Foata (in

The material in this chapter corresponds to section III, chapters IT and IV in Combinatory
Analysis.
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collaboration with P. Cartier) presented a simplified approach to his proof
Cartier and Foata, 1969). Cartier (1972) provided three striking proofs, one
using symmetric functions, one using the symmetric group, and one using
homological algebra (Lefschetz’s Lemma). 1. J. Good (1962a) and J. Percus
1971) each provided a proof using multiple integral complex variable
techniques.

While the Master Theorem is historically the first really important
theorem of this type, other mathematicians (back to Jacobi) have studied
related problems. An excellent account of such researches was given by T.
Muir (1903), who placed the Master Theorem in a setting which also anti-
cipates recent work of P. Whittle (1956).

Applications of the Master Theorem have been discussed extensively by
Percus (1971), and also by L. Carlitz (1974, 1977), D. Foata (1965), P.
Cartier and D. Foata (1969), I. J. Good (1962b), M. Hall (1958), and H. S.
Wilf (1968). Askey, Ismail, and Rashed (1975) and Askey and Ismail (1976)
have presented a particularly interesting relationship between the Master
Theorem and positivity problems in analysis.

To give some of the flavor of recent work on the Master Theorem, we
shall present a modified account of the proof of Foata (1965). (See also Cartier
and Foata, 1969) in section 4.2. In section 4.3 we shall discuss a conjecture
of F. J. Dyson (1962) and one of the three subsequent proofs (I. J. Good,
1970); D. Foata has remarked that Dyson’s conjecture is closely related to
the Master Theorem and has suggested that many further results of com-
binatorial significance in this area still await discovery. Conjectures of F. J.
Dyson and M. L. Mehta (see Mehta, 1974, and 1967, chapter 4) provide
added evidence for this view.

3.2 The Master Theorem
We begin with a small lemma that reduces the proof of the Master
Theorem to a special case. By doing this, we facilitate the proof of the full
result.
Lemma. 1f the Master Theorem is true for

then it is true in general.

Proof. We begin by observing that the actual coefficient arising in the
product of the linear forms in the Master Theorem may be obtained by use
of the multinomial theorem; thus the coefficient is
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Hence the Master Theorem is equivalent to
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implies the truth of (1) in general.
We proceed to treat the sum in (1) by replacing each p; by >"_ 4
then we sum on each /;, using the binomial series. Therefore,
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In the above, 3" is summed over all nonnegative integers hji subject to 371 -4
hji = Xi-yhyj; X # is the same as 3.' with the added proviso that each 4j; =
0. The penultimate equation above follows from (1) in the special case in
which all the diagonal coefficients are zero. Hence our lemma is established.

Proof of the Master Theorem. Let us consider the set P of permutations
without fixed points of the multiset 1%* 22 .. 7% (a multiset is a set in which
repetitions may occur; e.g., in the case under consideration, 1 appears a;
times, 2 appears a, times, etc.). We shall denote such a permutation by using
the standard notation

] AR SL 2 Sre e AR i e r
<i1izia oo daytaibt oo Taybay coe layh L. tap— g bl oo oyt ...+a,>’
where each entry in the lower line is the image of the corresponding entry in
the upper line under the permutation. When we say that the permutation is
without fixed points, we mean that the upper entry is never equal to the
corresponding lower entry.

We now define a semi-group structure on P where the operation involved
is the juxtaposition (or intercalation) of permutations. For example,

12) (e 1){es s
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Note that the above procedure is exactly like that used in the treatment of
permutations of sets, except that columns with the same upper elements, such
as 7 3 3, must retain their left-to-right order in the factorization. We observe
that primes in this semi-group are precisely the cycles of length at least 2
(since there are no fixed points), and each permutation factors uniquely (up
to permisseble commutations) into primes.

With these facts in mind, we replace each A( ) by the symbol ( ) Recalling

1
the lemma, we assume that<1> ] (Z) = 0. Then the desired coefficient

in the product of linear forms is nothing but

( 1115 RS, iN>
Jidz v/
where the sum is extended over all permutations without fixed points of the
multiset 171272 ., #P". If we multiply this sum by X%* X%2 ... X" and sum

over all p; = 0, we obtain the generating function for all multiset permutations
without fixed points on the first n positive integers:

5L
€= Xepes X, L
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On the other hand,

when expanded, equals

Z(nlz >(——1)‘X X "'XfM’
JiJz ..M,
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where < - ; ) is a permutation without fixed points of some subset of
Jijz M

1,2,3,...,n and ¢ is the number of cycles in this permutation.

To conclude our proof of the Master Theorem, we need only show that

D-G = 1. Now
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where the outer sum runs over all multiset permutations| =~ .| without
J1J2 << -JN
fixed points on the first n positive integers, and the inner sum runs over all

left factors my of (“lz ,V> made up of disjoint cycles. If the left prime
Jujz2--J

factors of( L2 If ) are denoted by 64, 7,, .. ., 6,, and if we define
J1Jz - e dn

(—1)™ if & factors into ¢ () disjoint cycles,
K (m) = :
0 otherwise,

then
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Thus the only term on the right side of (2) that does not vanish corresponds
to the empty permutation of the empty set. Therefore D-G = 1, and the
Master Theorem is proved.

3.3 Good’s Proof of Dyson’s Conjecture
Let us examine for a moment a special case of the Master Theorem,
namely,

Ay = 4g = Ag

Oi pddis o = Adnsl

Ay = Agy=rAgi=i=L

3
2
Thus the coefficient of

szﬂu X;:ﬂu Xsﬂn*az

382 Master Theorem



6y —r Ay R s SR O T

is identical with the same coefficient in

=D ="
m=0

Hence the desired coefficient arises from the lone term j; = a4, j, = ay,

Jitjatz=m J

J3 = as, and is therefore
(=)*e2*as (g 4 a) + a3)!fa;'aylas!.

D. Foata points out that this result may be stated in the following, slightly
altered form as a corollary of the Master Theorem (see [61]).

Corollary. The constant term in the expansion of (I — X3/X,)* (1 —
Rl 1 X AR (R O L o G [ X ) X (X ) is
(ay + ay + a3)!/ay'ay!as!.

This result is actually Dixon’s theorem on the summability of the well-
poised 3, (see W. N. Bailey, Generalized Hypergeometric Series, Cambridge
University Press, 1935, p.13), and in the case a; = a, = a3 = p, it reduces
to Dixon’s theorem concerning the sum of the cubes of the binomial coefficients.

Interestingly enough, this corollary has a generalization which seems to
be related to the Master Theorem and suggests the existence of more general
results in this area:

Theorem ( Dyson’s Conjecture). The constant term in the expansion of

(1 = X,/X)%

1<i%)<n

is(ay + a3 + ... + ay)!ay'lay! ... a,).

Remark. F. J. Dyson (1962) conjectured this result in an extensive work
on statistical mechanics. Shortly thereafter, J. Gunson (1962) and K. Wilson
(1962) proved this result. D. Foata pointed out the intersection of Dyson’s
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conjecture and MacMahon’s Master Theorem. 1. J. Good (1970) gave a very

short and elegant proof which we now present.

Proof. We begin by noting that

3) e 1o Py
k=1 =1 (% — Xi)

J#k
since the right side of (3) is a polynomial of degree at most » — 1 that assumes
the value 1 for n different values of x, and is therefore identically 1. Setting

x = 0in (3), we obtain

/ 2 1
® el 0 = xxy)

k=l jml
J#k

Let us write

Fxp, ooy Xn @5 005 8p) = l_[ (1 — xj/x)%,

1€i#jSn
and observe that if we multiply equation (4) by this function, then when no
a; =0,
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Consequently, if G (ay, ..., a,) denotes the constant term in (5), then when
noa; = 0,
n
(6) Glafa S s dn )= G(als”')aj‘l;aj_lyaj+lr-'~:an)'

J=1

If a particular a; = 0, then x; occurs to nonpositive powers only in (5), so

that G (ay, ..., a,) is equal to the constant term in

VO 64 VS 1 Tl Ui ST o Uit e R0 ORI e g )
i.e.,
(7) G(ay, ..., 8y) = G(ay, ... 85-1,8541, -..,a,) ifa; = 0.
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Finally,
(8) 0 il =

Now equations (6), (7), and (8) uniquely define G(ay, ..., a,), and
since (ay; + a; + ... + a,)![ay!a,! ... a,! also satisfies (6), (7), and (8), we
must have

G(ay,...,a,) = (ay +a + ... + a,)!ay!ay! ... a,!.

This concludes our proof.
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3.5 Summaries of the Papers
[45] A certain class of generating functions in the theory of numbers, Phil.
Trans., 185 (1894), 111-160.

This is the extremely important paper in which MacMahon introduces
and proves his celebrated “Master Theorem.” (See section 3.1. for a statement
of the theorem.)

In section 1 MacMahon proves the Master Theorem. In section 2 he
applies it to several problems in the theory of permutations, including two
problems that appeared earlier (in [46]); the latter presumably led to his
discovery of the Master Theorem. In sections 3—6 he considers when a form
V,linear in xy, ..., x, can be written in the form det (d;; — a;;x;). The paper
concludes with a further exploration of permutation problems.

[61] The sums of powers of the binomial coefficients, Quart. J. Math., 33
(1902), 274-288.

This paper applies MacMahon’s Master Theorem to summations of
binomial coefficients. MacMahon proves (among many other results) that

)
Z ({)) (7) = (‘D ; q> (the Chu-Vandermonde sum),

i=0
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and,

d 9 3
Zpl)‘(f’) = (=1)?(20)!(p)®  (Dixon’s summation).

i=0
Use of the Master Theorem makes the derivation of these and many other
results extremely elegant (see section 3.3).
In this way MacMahon treats the sum

> (]

i=0

foria = 2,3 or4d.
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Reprints of the Papers

[45] A certain class of generating functions in the theory of numbers
[61] The sums of powers of the binomial coefficients
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