
Chapter 2 

Permutations and Combinations 

Most readers of this book will have had some experience with simple counting prob­
lems, so the concepts "permutation" and "combination" are probably familiar. But 
the experienced counter knows that even rather simple-looking problems can pose dif­
ficulties in their solutions. While it is generally true that in order to learn mathematics 
one must do mathematics, it is especially so here-the serious student should attempt 
to solve a large number of problems. 

In this chapter, we explore four general principles and some of the counting formu­
las that they imply. Each of these principles gives a complementary principle, which 
we also discuss. We conclude with an application of counting to finite probability. 

2.1 Four Basic Counting Principles 

The first principle1 is very basic. It is one formulation of the principle that the whole 
is equal to the sum of its parts. 

Let 8 be a set. A partition of 8 is a collection 81, 82, ... , 8m of subsets of 8 such 
that each element of 8 is in exactly one of those subsets: 

8i n 8j = 0, (i i j). 

Thus, the sets 8 1,82", . , 8m are pairwise disjoint sets, and their union is 8. The 
subsets 8 1 ,82,,,,, 8m are called the parts of the partition. We note that by this 
definition a part of a partition may be empty, but usually there is no advantage in 

1 According to the The Random House College Dictionary, Revised Edition, 1997, a principle is (1) 
an accepted or professed rule of action or conduct, (2) a basic law, axiom, Or doctrine. O'urprinciples in 
this section are basic laws of mathematics and important rules of action for solving counting problems. 
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considering partitions with one or more empty parts. The number of objects of a set 
8 is denoted by 181 and is sometimes called the size of 8. 

Addition Principle. 8uppose that a set 8 is partitioned into pairwise disjoint parts 
8 1,82 , ... ,8m . The number of objects in 8 can be determined by finding the number 
of objects in each of the parts, and adding the numbers so obtained: 

If the sets 8 1 ,82 ,." , 8m are allowed to overlap, then a more profound principle, the 
inclusion-exclusion principle of Chapter 6, can be used to count the number of objects 
in 8. 

In applying the addition principle, we usually define the parts descriptively. In 
other words, we break up the problem into mutually exclusive cases that exhaust all 
possibilities. The art of applying the addition principle is to partition the set 8 to be 
counted into "manageable parts"-that is, parts which we can readily count. But this 
statement needs to be qualified. If we partition 8 into too many parts, then we may 
have defeated ourselves. For instance, if we partition 8 into parts each containing only 
one element, then applying the addition principle is the same as counting the number 
of parts, and this is basically the same as listing all the objects of 8. Thus, a more 
appropriate description is that the art of applying the addition principle is to partition 
the set 8 into not too many manageable parts. 

Example. Suppose we wish to find the number of different courses offered by the 
University of Wisconsin-Madison. We partition the courses according to the depart­
ment in which they are listed. Provided there is no cross-listing (cross-listing occurs 
when the same course is listed by more than one department), the number of courses 
offered by the University equals the sum of the number' of courses offered by each 
department. 0 

Another formulation of the addition principle in terms of choices is the following: 
If an object can be selected from one pile in p ways and an object can be selected from 
a separate pile in q ways, then the selection of one object chosen from either of the 
two piles can be made in p + q ways. This formulation has an obvious generalization 
to more than two piles. 

Example. A student wishes to take either a mathematics course or a biology course, 
but not both. If there are four mathematics courses and three biology courses for which 
the student has the necessary prerequisites, then the student can choose a course to 
take in 4 + 3 = 7 ways. 0 

The second principle is a little more complicated. We state it for two sets, but it 
can also be generalized to any finite number of sets. 

Multiplication Principle. Let 8 be a set of ordered pairs (a, b) of objects, where the 
first object a comes from a set of size p, and for each choice of object a there are q 



2.1. FOUR BASK COUNTING PRINCIPLES 29 

choices for object b. Then the size of S is p x q: 

JSI = p x q. 

The multiplication principle is actually a consequence of the addition principle. 
Let aI, a2, ... ,ap be the p different choices for the object a. We partition S into 
parts SI, S2, .. " Sp where Si is the set of ordered pairs in S with first object ai, 
(i = 1,2, ... ,p). The size of each Si is q; hence, by the addition principle, 

lSI ISll + IS21 + ... + ISpl 
q+q+"'+q (pq's) 
p x q. 

Note how the basic fact-multiplication of whole numbers is just repeated addition­
enters into the preceding derivation. 

A second useful formulation of the multiplication principle is as follows: If a first 
task has p outcomes and, no matter what the outcome of the first task, a second task 
has q outcomes, then the two tasks performed consecutively have p x q outcomes. 

Example. A student is to take two courses. The first meets at anyone of 3 hours in 
the morning, and the second at anyone of 4 hours in the afternoon. The number of 
schedules that are possible for the student is 3 x 4 = 12. 0 

As already remarked, the multiplication principle can be generalized to three, 
four, or any finite number of sets. Rather than formulate it in terms of n sets, we give 
examples for n = 3 and n = 4. 

Example. Chalk comes in three different lengths, eight different colors, and four 
different diameters. How many different kinds of chalk are there? 

To determine a piece of chalk of a specific type, we carry out three different tasks 
(it does not matter in which order we take these tasks): Choose a length, Choose a 
color, Choose a diameter. By the multiplication principle, there are 3 x 8 x 4 = 96 
different kinds of chalk. 0 

Example. The number of ways a man, woman, boy, and girl can be selected from 
five men, six women, two boys, and four girls is 5 x 6 x 2 x 4 = 240. 

The reason is that we have four different tasks to carry out: select a man (five 
ways), select a woman (six ways), select a boy (two ways), select a girl (four ways). 
If, in addition, we ask for the number of ways one person can be selected, the answer 
is 5 + 6 + 2 + 4 = 17. This follows from the a'ddition principle for four piles. 0 

Example. Determine the number of positive integers that are factors of the number 
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The numbers 3,5,11, and 13 are prime numbers. By the fundamental theorem of 
arithmetic, each factor is of the form 

3i x 51 X 11k X 131, 

where 0 'S i 'S 4, 0 'S j 'S 2, 0 'S k 'S 7, and 0 'S I 'S 8. There are five choices for i, 
three for j, eight for k, and nine for l. By the multiplication principle, the number of 
factors is 

5 x 3 x 8 x 9 = 1080. 

o 
In the multiplication principle the q choices for object b may vary with the choice of 

a. The only requirement is that there be the same number q of choices, not necessarily 
the same choices. 

Example. How many two-digit numbers have distinct and nonzero digits? 

A two-digit number ab can be regarded as an ordered pair (a, b), where a is the 
tens digit and b is the units digit. Neither of these digits is allowed to be 0 in the 
problem, and the two digits are to be different. There are nine choices for a, namely 
1,2, ... ,9. Once a is chosen, there are eight choices for b. If a = 1, these eight choices 
are 2,3, ... ,9, if a = 2, the eight choices are 1,3, ... ,9, and so on. What is important 
for application of the multiplication principle is that the number of choices is always 
8. The answer to the questions is, by the multiplication principle, 9 x 8 = 72. 

We can arrive at the answer 72 in another way. There are 90 two-digit numbers, 
10,11,12, ... ,99. Of these numbers, nine have a 0, (namely, 10,20, ... , 90) and nine 
have identical digits (namely, 11,22, ... ,99). Thus the number of two-digit numbers 
with distinct and nonzero digits equals 90 - 9 - 9 = 72. 0 

The preceding example illustrates two ideas. One is that there may be more than 
one way to arrive at the answer to a counting question. The other idea is that to find 
the number of objects in a set A (in this case the set of two-digit numbers with distinct 
and nonzero digits) it may be easier to find the number of objects in a larger set U 
containing S (the set of all two-digit numbers in the preceding example) and then 
subtract the number of objects of U that do not belong to A (the two-digit numbers 
containing a 0 or identical digits). We formulate this idea as our third principle. 

Subtraction Principle. Let A be a set and let U be a larger set containing A. Let 

A = U \ A = {x E U: x It" A} 

be the complement of A in U. Then the number IAI of objects in A is given by the 
rule 

IAI = 1U1-IAI· 
In applying the subtraction principle, the set U is usually some natural set con­

sisting of all the objects under discussion (the so-called universal set). Using the 
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subtraction principle makes sense only if it is easier to count the number of objects in 
U and in A than to count the number of objects in A. 

Example. Computer passwords are to consist of a string of six symbols taken from 
the digits 0,1,2, ... ,9 and the lowercase letters a, b, c, ... ,z. How many computer 
passwords have a repeated symbol? 

We want to count the number of objects in the set A of computer passwords with a 
repeated symbol. Let U be the set of all computer passwords. Taking the complement 
of A in U we get the set A of computer passwords with no repeated symbol. By two 
applications of the multiplication principle, we get 

lUI = 366 = 2, 176,782,336 

and 
IAI = 36· 35 . 34·33·32·31 = 1,402,410,240. 

Therefore, 

IAI = lUI - IAI = 2, 176,782,336 - 1,402,410,240 = 774,372,096. 

o 

We now formulate the final principle of this section. 

Division Principle. Let 8 be a finite set that is partitioned into k parts in such a 
way that each part contains the same number of objects. Then the number of parts 
in the partition is given by the rule 

k = 181 
number of objects in a part 

Thus, we can determine the number of parts if we know the number of objects in 8 
and the common value of the number of objects in the parts. 

Example. There are 740 pigeons in a collection of pigeonholes. If each pigeonhole 
contains 5 pigeons, the number of pigeonholes equals 

740 _ 148 
5 - . 

o 
More profound applications of the division principle will occur later in this book. 

Now consider the next example. 

Example. You wish to give your Aunt Moille a basket of fruit. In your refrigerator 
you have six oranges and nine apples. The only requirement is that there must be at 
least one piece of fruit in the basket (that is, an empty basket of fruit is not allowed). 
How many different baskets of fruit are possible? 
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One way to count the number of baskets is the following: First, ignore the re­
quirement that the basket cannot be empty. We can compensate for that later. What 
distinguishes one basket of fruit from another is the number of oranges and number 
of apples in the basket. There are 7 choices for the number of oranges (0, 1, ... ,6) 
and 10 choices for the number of apples (0,1, ... ,9). By the multiplication principle, 
the number of different baskets is 7 x 10 = 70. Subtracting the empty basket, the 
answer is 69. Notice that if we had not (temporarily) ignored .the requirement that 
the basket be nonempty, then there would have been 9 or 10 choices for the number 
of apples depending on whether or not the number of oranges was 0, and we could 
not have applied the multiplication principle directly. But an alternative solution is 
the following. Partition the non empty baskets into two parts, Sl and S2, where Sl 
consists of those baskets with no oranges and S2 consists of those baskets with at least 
one orange. The size of Sl is 9 (1,2, ... ,9 apples) and the size of S2 by the foregoing 
reasoning is 6 x 10 = 60. The number of possible baskets of fruit is, by the addition 
principle, 9 + 60 = 69. 0 

We made an implicit assumption in the preceding example which we should now 
bring into the open. It was assumed in the solution that the oranges were indistin­
guishable from one another (an orange is an orange is an orange is ... ) and that the 
apples were indistinguishable from one another. Thus, what mattered in making up 
a basket of fruit was not which apples and which oranges went into it but only the 
number of each type of fruit. If we distinguished among the various oranges and the 
various apples (one orange is perfectly round, another is bruised, a third very juicy, 
and so on), then the number of baskets would be larger. We will return to this example 
in Section 3.5. 

Before continuing with more examples, we discuss some general ideas. 
A great many counting problems can be classified as one of the following types: 

(1) Count the number of ordered arrangements or ordered selections of objects 

(a) without repeating any object, 

(b) with repetition of objects permitted (but perhaps limited). 

(2) Count the number of unordered arrangements or unordered selections of objects 

(a) without repeating any object, 

(b) with repetition of objects permitted (but perhaps limited). 

Instead of distinguishing between nonrepetition and repetition of objects, it is some­
times more convenient to distinguish between selections from a set and a multiset. 
A multiset is like a set except that its members need not be distinct. 2 For example, 

2Thus a multiset breaks one of the' cardinal rules of sets, namely, elements are not repeated in sets; 
they are either in the set or not in the set. The set {a,a,b} is the same as the set {a,b} but not so 
for multisets, 
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we might have a multiset M with three a's, one b, two e's, and four d's, that is, 10 
elements of 4 different types: 3 of type a, 1 of type b, 2 of type e, and 4 of type d. We 
shall usually indicate a multiset by specifying the number of times different types of 
elements occur in it. Thus, M shall be denoted by {3· a, 1· b, 2· e, 4· d}.3 The numbers 
3,1,2, and 4 are the repetition numbers of the multiset M. A set is a multiset that has 
all repetition numbers equal to 1. To include the listed case (b) when there is no limit 
on the number of times an object of each type can occur (except for that imposed by 
the size of the arrangement), we allow infinite repetition numbers.4 Thus, a multiset 
in which a and c each have an infinite repetition number and band d have repetition 
numbers 2 and 4, respectively, is denoted by {oo . a, 2 . b,oo . c,4 . d}. Arrangements 
or selections in (1) in which order is taken into consideration are generally called per­
mutations, whereas arrangements or selections in (2) in which order is irrelevant are 
generally called combinations. In the next two sections we will develop some general 
formulas for the number of permutations and combinations of sets and multisets. But 
not all permutation and combination problems can be solved by using these formulas. 
It is often necessary to return to the basic addition, mUltiplication, subtraction, and 
division principles. 

Example. How many odd numbers between 1000 and 9999 have distinct digits? 

A number between 1000 and 9999 is an ordered arrangement of four digits. Thus 
we are asked to count a certain collection of permutations. We have four choices to 
make: a units, a tens, a hundreds, and a thousands digit. Since the numbers we want 
to count are odd, the units digit can be anyone of 1,3,5,7,9. The tens and the 
hundreds digit can be anyone of 0, 1, ... ,9, while the thousands digit can be anyone 
of 1,2, ... ,9. Thus, there are five choices for the units digit. Since the digits are to 
be distinct, we have eight choices for the thousands digit, whatever the choice of the 
units digit. Then, there are eight choices for the hundreds digit, whatever the first two 
choices were, and seven choices for the tens digit, whatever the first three choices were. 
Thus, by the multiplication principle, the answer to the question is 5 x 8 x 8 x 7 = 2240. 
o 

Suppose in the previous example we made the choices in a different order: First 
choose the thousands digit, then the hundreds, tens, and units. There are nine choices 
for the thousands digit, then nine choices for the hundreds digit (since we are allowed 
to use 0), eight choices for the tens digit, but now the number of choices for the units 
digit (which has to be odd) depends on the previous choices. If we had chosen no 
odd digits, the number of choices for the units digit would be 5; if we had chosen one 
odd digit, the number of choices for the units digit would be 4; and so on. Thus, we 
cannot invoke the multiplication principle if we carry out our choices in the reverse 
order. There are two lessons to learn from this example. One is that as soon as your 

3If we wanted to follow standard set-theoretic notation, we could designate the multiset Musing 
ordered pairs as {(a,3),(b,1),(c,2),(d,4)}. 

4There are no circumstances in which we will have to worry about different sizes of infinity. 
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answer for the number of choices of one of the tasks is "it depends" (or some such 
words), the multiplication principle cannot be applied. The second is that there may 
not be a fixed order in which the tasks have to be taken, and by changing the order a 
problem may be more readily solved by the mUltiplication principle. A rule of thumb 
to keep in mind is to make the most restrictive choice first. 

Example. How many integers between 0 and 10,000 have only one digit equal to 5? 

Let 8 be the set of integers between 0 and 10,000 with only one digit equal to 5. 

First solution: We partition 8 into the set 8 1 of one-digit numbers in 8, the set 82 

of two-digit numbers in 8, the set 83 of three-digit numbers in 8, and the set 84 of 
four-digit numbers in 8. There are no five-digit numbers in 8. We clearly have 

181 1 = 1. 

The numbers in 82 naturally fall into two types: (1) the units digit is 5, and (2) the 
tens digit is 5. The number of the first type is 8 (the tens digit cannot be 0 nor can 
it be 5). The number of the second type is 9 (the units digit cannot be 5). Hence, 

Reasoning in a similar way, we obtain 

1831 = 8 x 9 + 8 x 9 + 9 x 9 = 225, and 

1841 = 8 x 9 x 9 + 8 x 9 x 9 + 8 x 9 x 9 + 9 x 9 x 9 = 2673. 

Thus, 
181 = 1 + 17 + 225 + 2673 = 2916. 

8econd solution: By including leading zeros (e.g., think of 6 as 0006, 25 as 0025, 352 
as 0352), we can regard each number in 8 as a four-digit number. Now we partition 
8 into the sets 8f, 8~, 83, 8~ according to whether the 5 is in the first, second, third, 
or fourth position. Each of the four sets in the partition contains 9 x 9 x 9 = 729 
integers, and so the number of integers in 8 equals 

4 x 729 = 2916. 

o 

Example. How many different five-digit numbers can be constructed out of the digits 
1, 1, 1, 3, 8? 

Here we are asked to count permutations of a multiset with three objects of one 
type, one of another, and one of a third. We really have only two choices to make: 
which position is to be occupied by the 3 (five choices) and then which position is to 
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be occupied by the 8 (four choices). The remaining three places are occupied by Is. 
By the multiplication principle, the answer is 5 x 4 = 20. 

If the five digits are 1, 1, 1, 3, 3, the answer is 10, half as many. 0 

These examples clearly demonstrate that mastery of the addition and multiplica­
tion principles is essential for becoming an expert counter. 

2.2 Permutations of Sets 

Let r be a positive integer. By an r-permutation of a set S of n elements, we understand 
an ordered arrangement of r of the n elements. If S = {a,b,c}, then the three 1-
permutations of S are 

a b c, 

the six 2-permutations of S are 

ab ac ba be ca cb, 

and the six 3-permutations of S are 

abc acb bac bca cab cba. 

There are no 4-permutations of S since S has fewer than four elements. 
We denote by P(n, r) the number of r-permutations of an n-element set. If r > n, 

then P(n, r) = o. Clearly P(n, 1) = n for each positive integer n. An n-permutation 
of an n-element set S will be more simply called a permutation of S or a permutation 
of n elements. Thus, a permutation of a set S can be thought of as a listing of the 
elements of S in some order. Previously we saw that P(3,1) = 3, P(3, 2) = 6, and 
P(3,3) = 6. 

Theorem 2.2.1 For nand r positive integers with r :s: n, 

P(n, r) = n x (n - 1) x ... x (n - r + 1). 

Proof. In constructing an r-permutation of an n-element set, we can choose the first 
item in n ways, the second item in n - 1 ways, whatever the choice of the first item, .. 
. ,and the rth item in n - (r - 1) ways, whatever the choice of the first r - 1 items. By 
the multiplication principle the r items can be chosen in n x (n - 1) x ... x (n - r + 1) 
ways. 0 

For a nonnegative integer n, we define n! (read n factoriaO by 

n! = n x (n - 1) x ... x 2 x 1, 
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with the convention that o! = 1. We may then write 

n! 
P(n, r) = (n _ r)!· 

For n 2: 0, we define P(n,O) to be 1, and this agrees with the formula when r = o. 
The number of permutations of n elements is 

P( ) _ n! _ , 
n,n - ,- n .. o. 

Example. The number of four-letter "words" that can be formed by using each of 
the letters a, b, c, d, e at most once is P(5,4), and this equals 5!/(5 - 4)! = 120. The 
number of five-letter words equals P(5, 5), which is also 120. 0 

Example. The so-called "15 puzzle" consists of 15 sliding unit squares labeled with 
the numbers 1 through 15 and mounted in a 4-by-4 square frame as shown in Figure 
2.1. The challenge of the puzzle is to move from the initial position shown to any 
specified position. (That challenge is not the subject of this problem.) By a position, 
we mean an arrangement of the 15 numbered squares in the frame with one empty 
unit square. What is the number of positions in the puzzle (ignoring whether it is 
possible to move to the position from the initial one)? 

1 2 3 4 
5 6 7 8 
9 10 11 12 

13 14 15 

Figure 2.1 

The problem is equivalent to determining the number of ways to assign the numbers 
1,2, ... , 15 to the 16 squares of a 4-by-4 grid, leaving one square empty. Since we 
can assign the number 16 to the empty square, the problem is also equivalent to 
determining the number of assignments of the numbers 1,2, ... , 16 to the 16 squares, 
and this is P(16, 16) = 16!. 

What is the number of ways to assign the numbers 1,2, ... ,15 to the squares 
of a 6-by-6 grid, leaving 21 squares empty? These assignments correspond to the 15-
permutations of the 36 squares as follows: To an assignment of the numbers 1,2, ... ,15 
to 15 of the squares, we associate the 15-permutation of the 36 squares obtained by 
putting the square labeled 1 first, the square labeled 2 second, and so on. Hence the 
total number of assignments is P(36, 15) = 36!/21!. 0 

Example. What is the number of ways to order the 26 letters of the alphabet so that 
no two of the vowels a, e, i, 0, and u occur consecutively? 
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The solution to this problem (like so many counting problems) is straightforward 
once we see how to do it. We think of two main tasks to be accomplished. The 
first task is to decide how to order the consonants among themselves. There are 21 
consonants, and so 21! permutations of the consonants. Since we cannot have two 
consecutive vowels in our final arrangement, the vowels must be in 5 of the 22 spaces 
before, between, and after the consonants. Our second task is to put the vowels in 
these places. There are 22 places for the a, then 21 for the e, 20 for the i, 19 for the 
0, and 18 for the u. That is, the second task can be accomplished in 

22! 
P(22,5) =, 

17. 

ways. By the multiplication principle, we determine that the number of ordered ar­
rangements of the letters of the alphabet with no two vowels consecutive is 

2 ' 22! 1. x ,. 
17. 

o 

Example. How many seven-digit numbers are there such that the digits are dis­
tinct integers taken from {I, 2, ... ,9} and such that the digits 5 and 6 do not appear 
consecutively in either order? 

We want to count certain 7-permutations of the set {I, 2, ... , 9}, and we partition 
these 7-permutations into four types: (1) neither 5 nor 6 appears as a digit; (2) 
5, but not 6, appears as a digit; (3) 6, but not 5, appears as a digit; (4) both 5 
and 6 appear as digits. The permutations of type (1) are the 7-permutations of 
{I, 2, 3, 4, 7, 8, 9}, and hence their number is P(7,7) = 7! = 5040. The permutations 
of type (2) can be counted as follows: The digit equal to 5 can be anyone of the seven 
digits. The remaining six digits are a 6-permutation of {I, 2, 3, 4, 7, 8, 9}. Hence there 
are 7 P(7, 6) = 7(7!) = 35,280 numbers of type (2). In a similar way we see that there 
are 35,280 numbers of type (3). To count the number of permutations of type (4), we 
partition the permutations of type (4) into three parts: 

First digit equal to 5, and so second digit not equal to 6: 

There are five places for the 6. The other five digits constitute a 5-permutation of the 
7 digits {I, 2, 3, 4, 7, 8, 9}. Hence, there are 

5 x 7! 
5 x P(7,5) = ~ = 12,600 

numbers in this part. 
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Last digit equal to 5, and so next to last digit not equal to 6: 

5 . 

By an argument similar to the preceding, we conclude that there are also 12,600 
numbers in this part. 

A digit other than the first or last is equal to 5: 

The place occupied by 5 is anyone of the five interior places. The place for the 6 can 
then be chosen in four ways. The remaining five digits constitute a 5-permutation of 
the seven digits {I, 2, 3, 4, 7, 8, 9}. Hence, there are 5 x 4 x P(7,5) = 50,400 numbers 
in this category. Thus, there are 

2(12,600) +50,400=75,600 

numbers of types (4). By the addition principle, the answer to the problem posed is 

5040 +2(35,280) +75,600 =151,200. 

The solution just given was arrived at by partitioning the set of objects we wanted 
to count into manageable parts, parts the number of whose objects we could calculate, 
and then using the addition principle. An alternative, and computationally easier, 
solution is to use the subtraction principle as follows. Let us consider the entire 
collection T of seven-digit numbers that can be formed by using distinct integers from 
{I, 2, ... ,9}. The set T then contains 

P(9,7) = ~ = 181,440 

numbers. Let S consist of those numbers in T in which 5 and 6 do not occur consecu­
tively; so the complement S consists of those numbers in T in which 5 and 6 do occur 
consecutively. We wish to determine the size of S. If we can find the size of S, then 
our problem is solved by the subtraction principle. How many numbers are there in 
S? In S, the digits 5 and 6 occur consecutively. There are six ways to position a 5 
followed by a 6, and six ways to position a 6 followed by a 5. The remaining digits 
constitute a 5-permutation of {I, 2, 3, 4,7,8, 9}. So the number of numbers in S is 

2 x 6 x P(7, 5) = 30,240. 

But then S contains 181,440 - 30,240 = 151,200 numbers. 

The permutations that we have just considered are more properly called linear 
permutations. We think of the ·objects as being arranged in a line. If instead of 
arranging objects in a line, we arrange them in a circle, the number of permutations 
is smaller. Think of it this way: Suppose six children are marching in a circle. In how 



2.2. PERMUTATIONS OF SETS 39 

many different ways can they form their circle? Since the children are moving, what 
matters are their positions relative to each other and not to their environment. Thus, 
it is natural to regard two circular permutations as being the same provided one can 
be brought to the other by a rotation, that is, by a circular shift. There are six linear 
permutations for each circular permutation. For example, the circular permutation 

1 

2 6 

3 5 

4 

arises from each of the linear permutations 

123456 234561 345612 

456123 561234 612345 

by regarding the last digit as coming before the first digit. Thus, there is a 6-to-1 
correspondence between the linear permutations of six children and the circular per­
mutations of the six children. Therefore, to find the number of circular permutations, 
we divide the number of linear permutations by 6. Hence, the number of circular 
permutations of the six children equals 6'/6 = 51. 

Theorem 2.2.2 The number of circular r-permutations of a set ofn elements is given 
by 

P(n,r) n! 
r r.(n-r)'· 

In particular, the number of circular permutations of n elements is (n - I)!. 

Proof. A proof is essentially contained in the preceding paragraph and uses the divi­
sion principle. The set of linear r-permutations can be partitioned into parts in such 
a way that two linear r-permutations correspond to the same circular r-permutation 
if and only if they are in the same part. Thus, the number of circular r-permutations 
equals the number of parts. Since each part contains r linear r-permutations, the 
number of parts is given by 

P(n,r) n! 
r r.(n-r)!· 

o 

For emphasis, we remark that the preceding argument worked because each part 
contained the same number of r-permutations so that we could apply the division 
principle to determine the number of parts. If, for example, we partition a set of 10 
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objects into parts of sizes 2,4, and 4, respectively, the number of parts cannot be 
obtained by dividing 10 by 2 or 4. 

Another way to view the counting of circular permutations is the following: Sup­
pose we wish to count the number of circular permutations of A, B, C, D, E, and F 
(the number of ways to seat A, B, C, D, E, and F around a table). Since we are free 
to rotate the people, any circular permutation can be rotated so that A is in a fixed 
position; think of it as the "head" of the table: 

A 

D C 

F B 

E 

Now that A is fixed, the circular permutations of A, B, C, D, E, and F can be identified 
with the linear permutations of B, C, D, E, and F. (The preceding circular permuta­
tion is identified with the linear permutation DFEBC.) There are 5! linear permuta­
tions of B, C, D, E, and F, and hence 5! circular permutations of A, B, C, D, E, and 
F. 

This way of looking at circular permutations is also useful when the formula for 
circular permutations cannot be applied directly. 

Example. Ten people, including two who do not wish to sit next to one another, are 
to be seated at a round table. How many circular seating arrangements are there? 

We solve this problem using the subtraction principle. Let the 10 people be 
Pl , P2 , P3 , • .. ,PlO , where Pl and P2 are the two who do not wish to sit together. 
Consider seating arrangements for 9 people X, P3, ... , P lO at a round table. There are 
8! such arrangements. If we replace X by either Pl , P2 or by P2 , Pl in each of these 
arrangements, we obtain a seating arrangement for the 10 people in which Pl and 
P2 are next to one another. Hence using the subtraction principle, we see that the 
number of arrangements in which Pl and P2 are not together is 9! - 2 x 8! = 7 x 81. 

Another way to analyze this problem is the following: First seat Pl at the "head" 
of the table. Then P2 cannot be on either side of Pl' There are 8 choices for the 
person on H's left, 7 choices for the person on H's right, and the remaining seats can 
be filled in 7! ways. Thus, the number of seating arrangements in which Pl and P2 

are not together is 
8 x 7 x 7! = 7 x 81. 

o 

As we did before we discussed circular permutations, we will continue to use per­
mutation to mean "linear permutation." 

Example. The number of ways to have 12 different markings on a rotating drum is 
P(12, 12)/12 = 111. 0 
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Example. What is the number of necklaces that can be made from 20 beads, each of 
a different color? 

There are 20! permutations of the 20 beads. Since each necklace can be rotated 
without changing the arrangement of the beads, the number of necklaces is at most 
20!/20 = 191. Since a necklace can also be turned over without changing the arrange­
ment of the beads, the total number of necklaces, by the division principle, is 19!/2. 
o 

Circular permutations and necklaces are counted again in Chapter 14, in a more 
general context. 

2.3 Combinations (Subsets) of Sets 

Let S be a set of n elements. A combination of a set S is a term usually used to denote 
an unordered selection of the elements of S. The result of such a selection is a subset 
A of the elements of S: A ~ S. Thus a combination of S is a choice of a subset of 
S. As a result, the terms combination and subset are essentially interchangeable, and 
we shall generally use the more familiar subset rather than perhaps the more awkward 
combination, unless we want to emphasize the selection process. 

Now let r be a nonnegative integer. By an r-combination of a set S of n elements, 
we understand an unordered selection of r of the n objects of S. The result of an 
r-combination is an r-subset of S, a subset of S consisting of r of the n objects of S. 
Again, we generally use "r-subset" rather than "r-combination." 

If S = {a, b, c, d}, then 

{a,b,c},{a,b,d},{a,c,d},{b,c,d} 

are the four 3-subsets of S. We denote by (~) the number of r-subsets of an n-element 
set.5 Obviously, 

if r > n. 

Also, 

if r > O. 

The following facts are readily seen to be true for each nonnegative integer n: 

(~) = 1, (7) = n, (:) = 1. 

In particular, (g) = 1. The basic formula for the number of r-subsets is given in the 
next theorem. 

50t her common notations for these numbers are C(n, r) and nCr. 
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Theorem 2.3.1 For 0::; r ::; n, 

P( n, r) = r! (~) . 

Hence, 

( n) n! 
r - r!(n.- r)!' 

Proof. Let S be an n-element set. Each r-permutation of S arises in exactly one way 
as a result of carrying out the following two tasks: 

(1) Choose r elements from S. 

(2) Arrange the chosen r elements in some order. 

The number of ways to carry out the first task is, by definition, the number (~). The 
number of ways to carry out the second task is P(r, r) = r!. By the multiplication 
principle, we have P( n, r) = r! (~). We now use our formula P( n, r) = (n~!T)! and 
obtain 

( n) P(n, r) n! 
r = -r-!- = r!(n - r)!' o 

Example. Twenty-five points are chosen in the plane so that no three of them are 
collinear. How many straight lines do they determine? How many triangles do they 
determine? 

Since no three of the points lie on a line, every pair of points determines a unique 
straight line. Thus, the number of straight lines determined equals the number of 
2-subsets of a 25-element set, and this is given by 

( 25) 25! 
2 = 2!23! = 300. 

Similarly, every three points determines a unique triangle, so that the number of 
triangles determined is given by 

( 25) 25! 
3 = 3!22" 

o 

Example. There are 15 people enrolled in a mathematics course, but exactly 12 
attend on any given day. The number of different ways that 12 students can be chosen 
is 

( 15) 15! 
12 = 12!3!' 
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If there are 25 seats in the classroom, the 12 students could seat themselves in 
P(25,12) = 25!/13! ways. Thus, there are 

( 15) 15!25! 
12 P(25, 12) = 12!3!13! 

ways in which an instructor might see the 12 students in the classroom. o 

Example. How many eight-letter words can be constructed by using the 26 letters of 
the alphabet if each word contains three, four, or five vowels? It is understood that 
there is no restriction on the number of times a letter can be used in a word. 

We count the number of words according to the number of vowels they contain 
and then use the addition principle. 

First, consider words with three vowels. The three positions occupied by the vowels 

can be chosen in ( ~ ) ways; the other five positions are occupied b; consonants. The 

vowel positions can then be completed in 53 ways and the consonant positions in 215 

ways. Thus, the number of words with three vowels is 

In a similar way, we see that the number of words with four vowels is 

and the number of words with five vowels is 

Hence, the total number of words is 

8! 3 5 8! 4 4 8! 5 3 
3!5!521 + 4!4!5 21 + 5!3!5 21 . 

o 

The following important property is immediate from Theorem 2.3.1: 

Corollary 2.3.2 FOT 0 :s; T :s; n, 

o 
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The numbers (~) have many important and fascinating properties, and Chapter 5 
is devoted to some of these. For the moment, we discuss only two basic properties. 

Theorem 2.3.3 (Pascal's formula) For all integers nand k with 1 ::; k ::; n - 1, 

( n) = (n - 1) (n - 1) 
k k + k-I . 

Proof. One way to prove this identity is to substitute the values of these numbers 
as given in Theorem 2.3.1 and then check that both sides are equal. We leave this 
straightforward verification to the reader. 

A combinatorial proof can be obtained as follows: Let S be a set of n elements. 
We distinguish one of the elements of S and denote it by x. Let S \ {x} be the set 
obtained from S by removing the element x. We partition the set X of k-subsets of S 
into two parts, A and B. In A we put all those k-subsets which do not contain x. In 
B we put all the k-subsets which do contain x. The size of X is IXI = (~); hence, by 
the addition principle, 

G) = IAI + IBI· 

The k-subsets in A are exactly the k-subsets of the set S \ {x} of n - 1 elements; thus, 
the size of A is 

A k-subset in B can always be obtained by adjoining the element x to a (k -I)-subset 
of S \ {x}. Hence, the size of B satisfies 

( n -1) IBI = k -1 . 

Combining these facts, we obtain 

o 

To illustrate the proof, let n = 5, k = 3, and S = {x, a, b, c, d}. Then the 3-subsets 
of S in A are 

{a,b,e},{a,b,d},{a,c,d},{b,e,d}. 

These are the 3-subsets of the set {a, b, e, d}. The 3-subsets S in Bare 

{x,a,b},{x,a,e},{x,a,d},{x,b,e}, {x,b,d},{x,e,d}. 

Upon deletion of the element x in these 3-subsets, we obtain 

{a,b}, {a,e}, {a,d},{b,e}, {b,d}, {e,d}, 
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the 2-su bsets of {a, b, c, d}. Thus, 

C) = 10 = 4 + 6 = G) + G)' 
Theorem 2.3.4 For n 2: 0, 

and the common value equals the number of subsets of an n-element set. 

Proof. We prove this theorem by showing that both sides of the preceding equation 
count the number of subsets of an n-element set S, but in different ways. First we 
observe that every subset of S is an r-subset of S for some r = 0, 1,2, ... , n. Since (~) 
equals the number of r-subsets of S, it follows from the addition principle that 

(~) + G) + G) + ... + (~) 
equals the number of subsets of S. 

We can also count the number of subsets of S by breaking down the choice of a 
subset into n tasks: Let the elements of S be Xl, X2, .. . , X n . In choosing a subset of S, 
we have two choices to make for each of the n elements: Xl either goes into the subset 
or it doesn't, X2 either goes into the subset or it doesn't, ... , Xn either goes into the 
subset or it doesn't. Thus, by the multiplication principle, there are 2n ways we can 
form a subset of S. We now equate the two counts and complete the proof. 0 

The proof of Theorem 2.3.4 is an instance of obtaining an identity by counting the 
objects of a set (in this case the subsets of a set of n elements) in two different ways 
and setting the results equal to one another. This technique of "double counting" is a. 
powerful one in combinatorics, and we will see several other applications of it. 

Example. The number of 2-subsets of the set {I, 2, ... , n} of the first n positive 
integers is (~). Partition the 2-subsets according to the largest integer they contain. 
For each i = 1,2, ... , n, the number of 2-subsets in which i is the largest integer is 
i-I (the other integer can be any of 1,2, ... , i-I). Equating the two counts, we 
obtain the identity 

0+ 1 + 2 + ... + (n _ 1) = (n) = _n(,---n_-_1-'..) 
2 2' 

o 
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2.4 Permutations of Multisets 

If S is a multiset, an r-permutation of S is an ordered arrangement of r of the objects 
of S. If the total number of objects of S is n (counting repetitions), then an n­
permutation of S will also be called a permutation of S. For example, if S = {2· a, 1 . 
b,3 . c}, then 

acbc cbcc 

are 4-permutations of S, while 
abccca 

is a permutation of S. The multiset S has no 7-permutations since 7 > 2 + 1 + 3 = 6, 
the number of objects of S. We first count the number of r-permutations of a multiset 
S, each of whose repetition number is infinite. 

Theorem 2.4.1 Let S .be a multiset with objects of k different types, where each object 
has an infinite repetition number. Then the number of r-permutations of S is kr. 

Proof. In constructing an r-permutation of S, we can choose the first item to be an 
object of anyone of the k types. Similarly, the second item can be an object of anyone 
of the k types, and so on. Since all repetition numbers of S are infinite, the number 
of different choices for any item is always k and it does not depend on the choices of 
any previous items. By the multiplication principle, the r items can be chosen in k r 

ways. 0 

An alternative phrasing of the theorem is: The number of r-permutations of k 

distinct objects, each available in unlimited supply, equals kr. We also note that the 
conclusion of the theorem remains true if the repetition numbers of the k different 
types of objects of S are all at Least r. The assumption that the repetition numbers 
are infinite is a simple way of ensuring that we never run out of objects of any type. 

Example. What is the number of ternary numerals6 with at most four digits? 

The answer to this question is the number of 4-permutations of the multiset {oo . 
0,00·1,00' 2} or of the multiset {4· 0,4·1,4· 2}. By Theorem 2.4.1, this number 
equals 34 = 81. 0 

We now count permutations of a multiset with objects of k different types, each 
with a finite repetition number. 

Theorem 2.4.2 Let S be a multiset with objects of k different types with finite repe­
tition numbers nl, n2, ... , nk, respectively. Let the size of S be n = nl + n2 + ... + nk. 
Then the number of permutations of S equals 

n! 

6 A ternary numeral, or base 3 numeral, is one arrived at by representing a number in terms of 
powers of 3. For instance, 46 = 1 x 33 + 2 X 32 + 0 X 3' + 1 x 3°, and so its ternary numeral is 1201. 
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Proof. We are given a multiset S having objects of k types, say aI, a2, ... ,ak, with 
repetition numbers nl, n2, ... ,nk, respectively, for a total of n = nl + n2 + ... + nk 
objects. We want to determine the number of permutations of these n objects. We 
can think of it this way. There are n places, and we want to put exactly one of the 
objects of S in each of the places. We first decide which places are to be occupied 
by the aI's. Since there are nl aI's in S, we must choose a subset of nl places from 
the set of n places. We can do this in (:J ways. We next decide which places are 
to be occupied by the a2 'so There are n - nl places left, and we must choose n2 of 
them. This can be done in (n~~l) ways. We next find that there are (n-~3-n2) ways 
to choose the places for the a3 'so We continue like this, and invoke the multiplication 
principle and find that the number of permutations of S equals 

(~) (n :2 nl) (n - ::3 -n2) ... (n - nl - n~~ ... - nk-l ). 

Using Theorem 2.3.1, we see that this number equals 

n! (n - nl)! (n - nl - n2)! 
nl!(n - nr)! n2!(n - nl - n2)! n3!(n - nl - n2 - n3)! 

which, after cancellation, reduces to 

(n - nl - n2 - ... -nk-r)! 
nk!(n - nl - n2 - ... - nk)!' 

n! n! 
nl!n2!n3! ... nk!O! nl!n2!n3!" . nk!' 

o 

Example. The number of permutations of the letters in the word MISSISSIPPI is 

11! 

1!4!4!2! ' 

since this number equals the number of permutations of the multiset {I . M,4 . 1,4· 
S,2·P}. 0 

If the multiset S has only two types, al and a2, of objects with repetition numbers 
nl and n2, respectively, where n = nl + n2, then according to Theorem 2.4.2, the 
humber of permutations of S is 

n! n! (n) 
nrln2! = nl!(n - nt)! = nl . 

Thus we may regard (:J as the number of nl-subsets of a set of n objects, and also 
as the number of permutations of a multiset with two types of objects with repetition 
numbers nl and n - nl, resp'ectively. 
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There is another interpretation of the numbers nl!n~! ... nk! that occur in Theorem 
2.4.2. This concerns the problem of partitioning a set of objects into parts of prescribed 
sizes where the parts now have labels assigned to them. To understand the implications 
of the last phrase, we offer the next example. 

Example. Consider a set of the four objects {a, b, c, d} that is to be partitioned into 
two sets, each of size 2. If the parts are not labeled, then there are three different 
partitions: 

{a,b}, {c,d}; {a,c},{b,d}; {a,d},{b,c}. 

Now suppose that the parts are labeled with different labels ( e.g,. the colors red and 
blue). Then the number of partitions is greater; indeed, there are six, since we can 
assign the labels red and blue to each part of a partition in two ways. For instance, 
for the particular partition {a,b}, {c,d} we have 

red box{ a, b}, blue box{ c, d} 

and 
blue box{ a, b}, red box{ c, d}. 

o 

In the general case, we can label the parts B l , B2, ... ,Bk (thinking of color 1, color 
2, ... , color k), and we also think of the parts as boxes. We then have the following 
result .. 

Theorem 2.4.3 Let n be a positive integer and let nl, n2, ... ,nk be positive integers 
with n = nl + n2 + ... + nk· The number of ways to partition a set of n objects into k 
labeled boxes in which Box 1 contains nl objects, Box 2 contains n2 objects, ... , Box 
k contains nk objects equals 

n! 
nl!n2!··· nk!· 

If the boxes are not labeled, and nl = n2 = ... = nk, then the number of partitions 
equals 

n! 

Proof. The proof is a direct application of the multiplication principle. We have to 
choose which objects go into which boxes, subject to the size restrictions. We first 
choose nl objects for the first box, then n2 of the remaining n - nl objects for the 
second box, then n3 of the remaining n - nl - n2 objects for the third box, ... , and 
finally n- nl - ... - nk-l = nk objects for the kth box. By the multiplication principle, 
the number of ways to make these choices is 



2.4. PERMUTATIONS OF MUL TISETS 49 

As in the proof of Theorem 2.4.2, this gives 

n! 

If boxes are not labeled and nl = n2 = ... = nk, then the result has to be divided 
by kL This is so because, as in the preceding example, for each way of distributing 
the objects into the k unlabeled boxes there are k! ways in which we can now attach 
the labels 1,2, ... ,k. Hence, using the division principle, we find that the number of 
partitions with unlabeled boxes is 

n! 

o 

The more difficult problem of counting partitions in which the sizes of the parts 
are not prescribed is studied in Section 8.2. 

We conclude this section with an example of a kind that we shall refer to many 
times in the remainder of the text.7 The example concerns nonattacking rooks on a 
chessboard. Lest the reader be concerned that knowledge of chess is a prerequisite for 
the rest of the book, let us say at the outset that the only fact needed about the game 
of chess is that two rooks can attack one another if and only if they lie in the same 
row or the same column of the chessboard. No other knowledge of chess is necessary 
(nor does it help!). Thus, a set of nonattacking rooks on a chessboard simply means 
a collection of "pieces" called rooks that occupy certain squares of the board, and no 
two of the rooks lie in the same row or in the same column. 

Example. How many possibilities are there for eight nonattacking rooks on an 8-by-8 
chessboard? 

An example of eight nonattacking rooks on an 8-by-8 board is the following: 

0 
0 

0 
0 

0 
0 

0 
0 

We give each square on the board a pair (i, j) of coordinates. The integer i desig­
nates the row number of the square, and the integer j designates the column number 

7It is the author's favorite kind of example to illustrate many ideas. 
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of the square. Thus, i and j are integers between 1 and 8. Since the board is 8-by-8 
and there are to be eight rooks on the board that cannot attack one another, there 
must be exactly one rook in each row. Thus, the rooks must occupy eight squares 
with coordinates 

(l,ir), (2,h),···, (8,j8)' 

But there must also be exactly one rook in each column so that no two of the numbers 
jl, j2, ... , j8 can be equal. More precisely, 

h,h,··· ,j8 

must be a permutation of {I, 2, ... , 8}. Conversely, if j 1, h, ... , j8 is a permutation of 
{I, 2, ... , 8}, then putting rooks in the squares with coordinates (1, jl), (2, h), ... , (8, j8) 
we arrive at eight non attacking rooks on the board. Thus, we have a one-to-one corre­
spondence between sets of 8 nonattacking rooks on the 8-by-8 board and permutations 
of {I, 2, ... ,8}. Since there are 8! permutations of {I, 2, ... ,8}, there are 8! ways to 
place eight rooks on an 8-by-8 board so that they are nonattacking. 

We implicitly assumed in the preceding argument that the rooks were indistin­
guishable from one another, that is, they form a multiset of eight objects all of one 
type. Therefore, the only thing that mattered was which squares we~e occupied by 
rqoks. If we have eight distinct rooks, say eight rooks each colored with one of eight 
different colors, then we have also to take into account which rook is in each of the 
eight occupied squares. Let us thus suppose that we have eight rooks of eight differ­
ent colors. Having decided which eight squares are to be occupied by the rooks (8! 
possibilities), we now have also to decide what the color is of the rook in each of the 
occupied squares. As we look at the rooks from row 1 to row 8, we see a permutation 
of the eight colors. Hence, having decided which eight squares are to be occupied (8! 
possibilities), we then have to decide which permutation of the eight colors (8! permu~ 
tations) we shall assign. Thus, the number of ways to have eight nonattacking rooks 
of eight different colors on an 8-by-8 board equals 

8!8! = (8!)2. 

Now suppose that, instead of rooks of eight different colors, we have one red (R) 
rook, three blue (B) rooks, and four (Y) yellow rooks. It is assumed that rooks of 
the same color are indistinguishable from one another.8 Now, as we look at the rooks 
from row 1 to row 8, we see a permutation of the colors of the multiset 

{1·R,3·B,4·Y}. 

The number of permutations of this multiset equals, by Theorem 2.4.2, 

8! 
1!3!4! . 

8Put another way, the only way we can tell one rook from another is by color. 
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Thus, the number of ways to place one red, three blue, and four yellow rooks on an 
8-by-8 board so that no rook can attack another equals 

,~_ (8!)2 
8' 1!3!4! - 1!3!4!' 

o 

The reasoning in the preceding example is quite general and leads immediately to 
the next theorem. 

Theorem 2.4.4 There are n rooks of k colors with nl rooks of the first color, n2 rooks 
of the second color, . . . , and nk rooks of the kth color. The number of ways to 
arrange these rooks on an n-by-n board so that no rook can attack another equals 

n! 
n! -:---:---.,. 

nl!n2!'" nk! 

o 

Note that if the rooks all have different colors (k = n and all n, = 1), the formula 
gives (n!)2 as an answer. If the rooks are all colored the same (k = 1 and ni = n), the 
formula gives n! as an answer. 

Let S be an n-element multiset with repetition numbers equal to nl, n2, .. . ,nk, so 
that n = ni + n2 + ... + nk. Theorem 2.4.2 furnishes a simple formula for the number 
of n-permutations of S. If r < n, there is, in general, no simple formula for the number 
of r-permutations of S . . Nonetheless a solution can be obtained by the technique of 
generating functions, and we discuss this in Chapter 7. In certain cases, we can argue 
as in the next example. 

Example. Consider the multiset S = {3 . a, 2· b, 4· c} of nine objects of three types. 
Find the number of 8-permutations of S. 

The 8-permutations of S can be partitioned into three parts: 

(i) 8-permutations of {2 . a, 2 . b,4 . c}, of which there are 

8! 
2!2!4! = 420; 

(ii) 8-permutations of {3· a, 1· b,4· c}, of which there are 

8! 
3!1!4! = 280; 

(iii) 8-permutations of {3 . a, 2· b, 3· c}, of which there are 

8! 
3!2!3! = 560. 
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Thus, the number of 8-permutations of S is 

420 + 280 + 560 = 1260. 

o 

2.5 Combinations of Multisets 

If S is a multiset, then an r-combination of S is an unordered selection of r of the 
objects of S. Thus, an r-combination of S (more precisely, the result of the selection) 
is itself a multiset, a submultiset of S of size r, or, for short, an r-submultiset. If 
S has n objects, then there is only one n-combination of S, namely, S itself. If S 
contains objects of k different types, then there are k 1-combinations of S. Unlike when 
discussing combinations of sets, we generally use combination rather than submultiset. 

Example. Let S = {2· a, 1· b, 3· c}. Then the 3-combinations of S are 

{2·a,1·b}, {2·a,1·c}, {1·a,1.b,1·c}, 

{1·a,2·c}, {1·b,2·c}, {3·c}. 

o 

We first count the number of r-combinations of a multiset all of whose repetition 
numbers are infinite (or at least r). 

Theorem 2.5.1 Let S be a multiset with objects of k types, each with an infinite 
repetition number. Then the number of r-combinations of S equals 

Proof. Let the k types of objects of S be aI, a2, ... , ak so that 

Any r-combination of S is of the form {Xl' aI, X2 . a2, ... , Xk . ad, where Xl, X2, ... , Xk 
are nonnegative integers with Xl + X2 + ... + Xk = r. Conversely, every sequence 
Xl, X2, .. · , Xk of nonnegative integers with Xl + X2 + ... + Xk = r corresponds to an 
r-combination of S. Thus, the number of r-combinations of S equals the number of 
solutions of the equation 

Xl + X2 + ... + Xk = r, 
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where Xl, X2, •.. ,Xk are nonnegative integers. We show that the number of these 
solutions equals the number of permutations of the multiset 

T = {r. 1, (k - 1) . *} 

of l' + k - 1 objects of two different types.9 Given a permutation of T, the k - 1 *'8 

divide the l' Is into k groups. Let there be Xl Is to the left of the first *, X2 Is between 
the first and the second *, ... , and Xk Is to the right of the last *. Then Xl, X2, ... ,Xk 

are nonnegative integers with Xl + X2 + ... + Xk = r. Conversely, given nonnegative 
integers Xl, X2, ... ,Xk with Xl +X2+' . '+Xk = 1', we can reverse the preceding steps and 
construct a permutation of T.lD Thus, the number of r-combinations of the multiset 
S equals the number of permutations of the multiset T, which by Theorem 2.4.2 is 

(1' + k - I)! = (1' + k - 1). 
r!(k - I)! l' 

o 

Another way of phrasing Theorem 2.5.1 is as follows: The number of r-combinations 
of k distinct objects, each available in unlimited supply, equals 

We note that Theorem 2.5.1 remains true if the repetition numbers of the k distinct 
objects of S are all at least r. 

Example. A bakery boasts eight varieties of doughnuts. If a box of doughnuts 
contains one dozen, how many different options are there for a box of doughnuts? 

It is assumed that the bakery has on hand a large number (at least 12) of each 
variety. This is a combination problem, since we assume the order of the doughnuts 
in a box is irrelevant for the purchaser's purpose. The number of different options for 
boxes equals the number of 12-combinations of a multiset with objects of 8 types, each 
having an infinite repetition number. By Theorem 2.5.1, this number equals 

o 

Example. What is the number of nondecreasing sequences of length l' whose terms 
are taken from 1,2, ... , k? 

9Equivalently, the number of sequences of Os and is of length r + k - 1 in which there are r is and 
k - lOs. 

lOFor example, if k = 4 and r = 5, then the permutation of T = {5· 1,3' *} given by *111 * *11 
corresponds to the solution of Xl + X2 + X3 + X4 = 5 given by Xl = 0, X2 = 3, X3 = 0, X4 = 2. 
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The nondecreasing sequences to be counted can be obtained by first choosing an 
r-combination of the multiset 

S = {oo . 1,00 . 2, ... ,00 . k} 

and then arranging the elements in increasing order. Thus, the number of such se­
quences equals the number of r-combinations of S, and hence, by Theorem 2.5.1, 
equals 

o 

In the proof of Theorem 2.5.1, we defined a one-to-one correspondence between 
r-combinations of a multiset S with objects of k different types and the nonnegative 
integral solutions of the equation 

Xl + X2 + ... + Xk = r. 

In this correspondence, Xi represents the number of objects of the ith type that are 
used in the r-combination. Putting restrictions on the number of times each type of 
object is to occur in the r-combination can be accomplished by putting restrictions on 
the Xi. We give a first illustration of this in the next example. 

Example. Let S be the multiset {1O. a, 10· b, 10· e, 10· d} with objects of four types, 
a, b, e, and d. What is the number of lO-combinations of S that have the property that 
each of the four types of objects occurs at least once? 

The answer is the number of positive integral solutions of 

where Xl represents the number of a's in a 10-combination, X2 the number of b's, X3 

the number of e's, and X4 the number of d's. Since the repetition numbers all equal 
10, and 10 is the size of the combinations being counted, we can ignore the repetition 
numbers of S. We then perform the changes of variable: 

YI = Xl - 1, Y2 = X2 - 1, Y3 = X3 - 1, Y4 = X4 - 1 

to get 

YI + Y2 + Y3 + Y4 = 6, 

where the y;'s are to be nonnegative. The number of nonnegative integral solutions of 
the new equation is, by Theorem 2.5.1, 

(:) = 84. o 
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Example. Continuing with the doughnut example following Theorem 2.5.1, we see 
that the number of different options for boxes of doughnuts containing at least one 
doughnut of each of the eight varieties equals 

(4+:-1) = (~1) =330. 

o 

General lower bounds on the number of times each type of object occurs in the 
combination also can be handled by a change of variable. We illustrate this in the 
next example. 

Example. What is the number of integral solutions of the equation 

Xl + X2 + X3 + X4 = 20, 

in which 
Xl ::::: 3, X2 ::::: 1, X3 ::::: 0 and X4::::: 57 

We introduce the new variables 

YI = Xl - 3, Y2 = X2 - 1, Y3 = X3, Y4 = X4 - 5, 

and our equation becomes 
YI + Y2 + Y3 + Y4 = 11. 

The lower bounds on the xi's are satisfied if and only if the Yi'S are nonnegative. The 
number of nonnegative integral solutions of the new equation, and hence the number 
of nonnegative solutions of the original equation, is 

o 

It is more difficult to count the number of r-combinations of a multiset 

with k types of objects and general repetition numbers nl, n2, . .. , nk. The number of 
r-combinations of S is the same as the number of integral solutions of 

Xl + X2 + ... + Xk = r, 

where 

We now have upper bounds on the Xi'S, and these cannot be handled in the same way 
as lower bounds. In Chapter 6 we show how the inclusion-exclusion principle provides 
a satisfactory method for this case. 
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2.6 Finite Probability 

In this section we give a brief and informal introduction to finite probability.ll As we 
will see, it all reduces to counting, and so the counting techniques discussed in this 
chapter can be used to calculate probabilities. 

The setting for finite probability is this: There is an experiment [ which when 
carried out results in one of a finite set of outcomes. We assume that each outcome is 
equally likely (that is, no outcome is more likely to occur than any other); we say that 
the experiment is carried out randomly. The set of all possible outcomes is called the 
sample space of the experiment and is denoted by S. Thus S is a finite set with, say, 
n elements: 

S = {S1' 82, ... ,sn}. 

When [ is carried out, each Si has a 1 in n chance of occuring, and so we say that the 
probability of the outcome 8i is l/n, written 

1 
Prob(8i) = -, (i = 1,2, ... ,n). 

n 

An event is just a subset E of the sample space S, but it is usually given descriptively 
and not by actually listing all the outcomes in E. 

Example. Consider the experiment [ of tossing three coins, where each of the coins 
lands showing either Heads (H) or Tails (T). Since each coin can come up either H or 
T, the sample space of this experiment is the set S of consisting of the eight ordered 
pairs 

(H,H,H), (H,H, T), (H,T,H), (H,T,T), 

(T, H, H), (T, H, T), (T, T, H), (T, T, T), 

where, for instance, (H, T, H) means that the first coin comes up as H, the second 
coin comes up as T, and the third coin comes up as H. Let E be the event that at 
least two coins come up H. Then 

E = {(H, H, H), (H,H, T), (H,T,H), (T,H,H)}, 

Since E consists of four outcomes out of a possible eight outcomes, it is natural to 
assign to E the probability 4/8 = 1/2. This is made more precise in the next definition. 
o 

The probability of an event E in an experiment with a sample space S is defined 
to be the proportion of outcomes in S that belong to E; thus, 

lEI 
Prob(E) = 1ST' 

11 As opposed to the continuous probability that is calculus based. 
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By this definition, the probability of an event E satisfies 

° ~ Prob(E) ~ 1, 

where Prob(E) = ° if and only if E is the empty event 0 (the impossible event) and 
Prob(E) = 1 if and only if E is the entire sample space S (the guaranteed event). 
Thus to compute the probability of an event E, we have to make two counts: count 
the number of outcomes in the sample space S and count the number of outcomes in 
the event E. 

Example. We consider an ordinary deck of 52 cards with each card having one of 13 
ranks 1,2, ... , 10, 11, 12, 13 and four suits Clubs (C), Diamonds (D), Hearts (H), and 
Spades (S). Usually, 11 is denoted as a Jack, 12 as a Queen, and 13 as a King. In 
addition, 1 has two roles: either as a 1 (low; below the 2) or as an Ace (high; above the 
King).12 Consider the experiment £ of drawing a card at random. Thus the sample 
space S is the set of 52 cards, each of which is assigned a probability of 1/52. Let E 
be the event that the card drawn is a 5. Thus 

E = {(C, 5), (D, 5), (H, 5), (S, 5)}. 

Since lEI = 4 and lSI = 52, Prob(E) = 4/52 = 1/13. o 

Example. Let n be a positive integer. Suppose we choose a sequence iI, i2,' .. , in 
of integers between 1 and n at random. (1) What is the probability that the chosen 
sequence is a permutation of 1,2, ... ,n? (2) What is the probability that the sequence 
contains exactly n - 1 different integers? 

The sample space S is the set of all possible sequences of length n each of whose 
terms is one of the integers 1,2, ... ,n. Hence lSI = nn because there are n choices for 
each of the n terms. 

(1) The event E that the sequence is a permutation satisfies lEI = n!. Hence 

n' Prob(E) = --...:. 
nn 

(2) Let F be the event that the sequence contains exactly n-l different integers. A 
sequence in F contains one repeated integer, and exactly one of the integers 1,2, ... ,n 
is missing in the sequence (so n - 2 other integers occur in the sequence). There are 
n choices for the repeated integer, and then n - 1 choices for the missing integer. The 

12For those who are either unfamiliar with card games or don't like them, here is a more abstract 
description: An ordinary deck of 52 cards is, abstractly, just the collection of the 52 ordered pairs 
(x, y), where x is one of four "suits" C, D, H, and S, and y is one of the thirteen ranks 1,2, ... ,13, 
where the smallest rank 1 can also be used as the largest rank (so we can think of a circle with 1 
following 13). 
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places for the repeated integer can be chosen in G) ways; the other n - 2 integers can 
be put in the remaining n - 2 places in (n - 2)! ways. Hence 

and 

( n) n!2 
IFI = n(n - 1) 2 (n - 2)! = 2!(n _ 2)!' 

n!2 
Prob(F) = 2!(n _ 2)!nn 

o 

Example. Five identical rooks are placed at random in nonattacking positions on an 
8-by-8 board. What is the probability that the rooks are both in rows 1,2,3,4,5 and 
in columns 4,5,6,7, 8? 

Our sample space S consist of all placements of five nonattacking rooks on the 
board and so 

( 8)2 8!2 
lSI = 5 . 5! = 3!25!· 

Let E be the event that the five rooks are in the rows and columns prescribed above. 
Then E has size 5!, since there are 5! ways to place five nonattacking rooks on a 5-by-5 
board. Hence we have 

5!23!2 1 
Prob(E) = -,2- = -3 3 . 

8. 1 6 
o 

Example. This is a multipart example relating to the card game Poker played with 
an ordinary deck of 52 cards. A poker hand consists of 5 cards. Our experiment 
£ is to select a poker hand at random. Thus the sample space S consists of the 
(552) = 2, 598, 960 possible poker hands and each has the same chance as being selected, 
namely 1/2,598,960. 

(1) Let E be the event that the poker hand is a full house; that is, three cards of one 
rank and two cards of a different rank (suit doesn't matter). To compute the 
probability of E, we need to calculate lEI. How do we determine the number of 
full houses? We use the multiplication principle thinking of four tasks: 

(a) Choose the rank with three cards. 

(b) Choose the three cards of that rank i.e., their 3 suits. 

(c) Choose the rank with two cards. 

(d) Choose the two cards of that rank i.e., their 2 suits. 

The number of ways of carrying these tasks out is as follows: 

(a) 13 
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(b) (~) = 4 

(c) 12 (after choice (a), 12 ranks remain) 

(d) @ = 6 

Thus lEI = 13·4·12·6 = 3,744 and 

Pr(E) = 3,744 i'::j 0.0014. 
2,598,960 

59 

(2) Let E be the event that the poker· hand is a straight; that is, five cards of 
consecutive ranks (suit doesn't matter), keeping in mind that the 1 is also the 
Ace. To compute lEI, we think of two tasks: 

(a) Choose the five consecutive ranks. 

(b) Choose the suit of each of the ranks. 

The number of ways of carrying out these two tasks is as follows: 

(a) 10 (the straights can begin with any of 1,2 .... , 10) 

(b) 45 (four possible suits for each rank) 

Thus lEI = 10.45 = 10,240 and 

10,240 
Pr(E) = 2,598,960 i'::j 0.0039. 

(3) Let E be the event that the poker hand is a straight flush; that is, five cards of 
consecutive ranks, all of the same suit. Using the reasoning in (b), we see that 
lEI = 10·4 = 40 and 

40 
Pr(E) = 2,598,960 i'::j 0.0000154. 

(4) Let E be the event that the poker hand consists of exactly two pairs; that is, two 
cards of one rank, two cards of a different rank, and one card of an additionally 
different rank. Here we have to be a littl€ careful since the first two mentioned 
ranks appear in the same way (as opposed to the full house, where there were 
three cards of one rank and two cards of a different rank). To compute lEI in 
this case, W€ think of three tasks (not si~ if we had imitated (1)): 

(a) Choose the two ranks occuring in the two pairs. 

(b) Choose the two suits for each of these two tanks. 

(c) Choose the remaining card. 
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The number of ways of carrying out these three tasks is as follows: 

(a) Ci) = 78 

(b) (~)(~) = 6 . 6 = 36 

(c) 44 

Thus lEI = 78 . 36 . 44 = 123,552, and 

123,552 
Pr(E) = 2,598,960 "'" 0.048, 

almost a 1 in 20 chance. 

(5) Let E be the event that the poker hand contains at least one Ace. Here we 
use our subtraction principle. Let E = S \ E be the complementary event of a 
poker hand with no aces. Then lEI = (~8) = 1,712,304. Thus lEI = lSI -lEI = 
2,598,960 - 1,712,304 = 886,656, and 

) 2,598,960 - 1,712,304 
Pr(E = 

2,598,960 

1 _ 1,712,304 
2,598,960 

886,656 
2,598,960 

~ 0.34. 

o 

As we see in the calculation in (5), our subtraction principle in terms of probability 
becomes 

Pr(E) = 1 - Pr(E), equivalently, Pr(E) = 1 - Pr(E). 

More probability calculations are given in the Exercises. 

2.7 Exercises 

1. For each of the four subsets of the two properties (a) and (b), count the number 
of four-digit numbers whose digits are either 1,2,3,4, or 5: 

(a) The digits are distinct. 

(b) The number is even. 
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Note that there are four problems here: 0 (no further restriction), {a} (property 
(a) holds), {b} (property (b) holds), {a,b} (both properties (a) and (b) hold). 

2. How many orderings are there for a deck of 52 cards if all the cards of the same 
suit are together? 

3. In how many ways can a poker hand (five cards) be dealt? How many different 
poker hands are there? 

4. How many distinct positive divisors does each of the following numbers have? 

(a) 34 x 52 X 76 x 11 

(b) 620 

(c) 1010 c 

5. Determine the largest power of 10 that is a factor of the following numbers 
(equivalently, the number of terminal Os, using ordinary base 10 representation): 

(a) 50! 

(b) 1000! 

6. How many integers greater than 5400 have both of the following properties? 

(a) The digits are distinct. 

(b) The digits 2 and 7 do not occur. 

7. In how many ways can four men and eight women be seated at a round table if 
there are to be two women between consecutive men around the table? 

8. In how many ways can six men and six women be seated at a round table if the 
men and women are to sit in alternate seats? 

9. In how many ways can 15 people be seated at a round table if B refuses to sit 
next to A? What if B only refuses to sit on A's right? 

10. A committee of five people is to be chosen from a club that boasts a membership 
of 10 men and 12 women. How many ways can the committee be formed if it is 
to contain at least two women? How many ways if, in addition, one particular 
man and one particular woman who are members of the club refuse to serve 
together on the committee? 

11. How many sets of three integers between 1 and 20 are possible if no two consec­
utive integers are to be in a set? 
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12. A football team of 11 players is to be selected from a set of 15 players, 5 of 
whom can play only in the backfield, 8 of whom can play only on the line, and 
2 of whom can play either in the backfield or on the line. Assuming a football 
team has 7 men on the line and 4 men in the backfield, determine the number 
of football teams possible. 

13. There are 100 students at a school and three dormitories, A, B, and C, with 
capacities 25, 35 and 40, respectively. 

(a) How many ways are there to fill the dormitories? 

(b) Suppose that, of the 100 students, 50 are men and 50 are women and that 
A is an all-men's dorm, B is an all-women's dorm, and C is co-ed. How 
many ways are there to fill the dormitories? 

14. A classroom has two rows of eight seats each. There are 14 students, 5 of whom 
always sit in the front row and 4 of whom always sit in the back row. In how 
many ways can the students be seated? 

15. At a party there are 15 men and 20 women. 

(a) How many ways are there to form 15 couples consisting of one man and 
one woman? 

(b) How many ways are there to form 10 couples consisting of one man and 
one woman? 

16. Prove that 

by using a combinatorial argument and not the values of these numbers as given 
in Theorem 3.3.1. 

17. In how many ways can six indistinguishable rooks be placed on a 6-by-6 board 
so that no two rooks can attack one another? In how many ways if there are 
two red and four blue rooks? 

18. In how many ways can two red and four blue rooks be placed on an 8-by-8 board 
so that no two rooks can attack one another? 

19. We are given eight rooks, five of which are red and three of which are blue. 

(a) In how many ways can the eight rooks be placed on an 8-by-8 chessboard 
so that no two rooks can attack one another? 

(b) In how many ways can the eight rooks be placed on a 12-by-12 chessboard 
so that no two rooks can attack one another? 
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20. Determine the number of circular permutations of {O, 1,2, ... ,9} in which 0 and 
9 are not opposite. (Hint: Count those in which 0 and 9 are opposite.) 

21. How many permutations are there of the letters of the word ADDRESSES? How 
many 8-permutations are there of these nine letters? 

22. A footrace takes place among four runners. If ties are allowed (even all four 
runners finishing at the same time), how many ways are there for the race to 
finish? 

23. Bridge is played with four players and an ordinary deck of 52 cards. Each player 
begins with a hand of 13 cards. In how many ways can a bridge game start? 
(Ignore the fact that bridge is played in partnerships.) 

24. A roller coaster has five cars, each containing four seats, two in front and two 
in back. There are 20 people ready for a ride. In how many ways can the ride 
begin? What if a certa:in two people want to sit in different cars? 

25. A ferris wheel has five cars, each containing four seats in a row. There are 20 
people ready for a ride. In how many ways can the ride begin? What if a certain 
two people want to sit in different cars? 

26. A group of mn people are to be arranged into m teams each with n players. 

(a) Determine the number of ways if each team has a different name. 

(b) Determine the number of ways if the teams don't have names. 

27. In how many ways can five indistinguishable rooks be placed on an 8-by-8 chess­
board so that no rook can attack another and neither the first row nor the first 
column is empty? 

28. A secretary works in a building located nine blocks east and eight blocks north 
of h.is home. Every day he walks 17 blocks to work. (See the map that follows.) 

(a) How many different routes are possible for him? 

(b) How many different routes are possible if the one block in the easterly 
direction, which begins four blocks east and three blocks north of his home, 
is under water (and he can't swim)? (Hint: Count the routes that use the 
block under water.) 
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.1 

29. Let S be a multiset with repetition numbers nI, n2, .. . , nk, where nI = 1. Let 
n = n2 + ... + nk. Prove that the number of circular permutations of S equals 

n! 

30. We are to seat five boys, five girls, and one parent in a circular arrangement 
around a table. In how many ways can this be done if no boy is to sit next to a 
boy and no girl is to sit next to a girl? What if there are two parents? 

31. In a soccer tournament of 15 teams, the top three teams are awarded gold, silver, 
and bronze cups, and the last three teams are dropped to a lower league. We 
regard two outcomes of the tournament as the same if the teams that receive 
the gold, silver, and bronze cups, respectively, are identical and the teams which 
drop to a lower league are also identical. How many different possible outcomes 
are there for the tournament? 

32. Determine the number of ll-permutations of the multiset 

S = {3· a,4· b,5· c}. 

33. Determine the number of lO-permutations of the multiset 

S = {3· a,4· b,5· c}. 

34. Determine the number of ll-permutations of the multiset 

S = {3 . a, 3· b, 3· c, 3· d}. 

35. List all 3-combinations and 4-combinations of the multiset 

{2. a, 1· b, 3· c}. 
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36. Determine the total number of combinations (of any size) of a multiset of objects 
of k different types with finite repetition numbers nl, n2, . .. ,nk, respectively. 

37. A bakery sells six different kinds of pastry. If the bakery has at least a dozen of 
each kind, how many different options for a dozen of pastries are there? What 
if a box is to contain at least one of each kind of pastry? 

38. How many integral solutions of 

satisfy Xl 2: 2, X2 2: 0, X3 2: -5, and X4 2: 8? 

39. There are 20 identical sticks lined up in a row occupying 20 distinct places as 
follows: 

11111111111111111111· 

Six of them are to be chosen. 

(a) How many choices are there? 

(b) How many choices are there if no two of the chosen sticks can be consecu­
tive? 

(c) How many choices are there if there must be at least two sticks between 
each pair of chosen sticks? 

40. There are n sticks lined up in a row, and k of them are to be chosen. 

(a) How many choices are there? 

(b) How many choices are there if no two of the chosen sticks can be consecu­
tive? 

(c) How many choices are there if there must be at least I sticks between each 
pair of chosen sticks? 

41. In how many ways can 12 indistinguishable apples and 1 orange be distributed 
among three children in such a way that each child gets at least one piece of 
fruit? 

42. Determine the number of ways to distribute 10 orange drinks, 1 lemon drink, 
and 1 lime drink to four thirsty students so that each student gets at least one 
drink, and the lemon and lime drinks go to different students. 

43. Determine the number of r-combinations of the multiset 
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44. Prove that the number of ways to distribute n different objects among k children 
equals kn. 

45. Twenty different books are to be put on five book shelves, each of which holds 
at least twenty books. 

(a) How many different arrangements are there if you only care about the 
number of books on the shelves (and not which book is where)? 

(b) How many different arrangements are there if you care about which books 
are where, but the order of the books on the shelves doesn't matter? 

(c) How many different arrangements are there if the order on the shelves does 
matter? 

46. (a) There is an even number 2n of people at a party, and they talk together 
in pairs, with everyone talking with someone (so n pairs). In how many 
different ways can the 2n people be talking like this? 

(b) Now suppose that there is an odd number 2n + 1 of people at the party 
with everyone but one person talking with someone. How many different 
pairings are there? 

47. There are 2n + 1 identical books to be put in a bookcase with three shelves. In 
how many ways can this be done if each pair of shelves together contains more 
books than the other shelf? 

48. Prove that the number of permutations of m A's and at most n B's equals 

( m+n+ 1). 
m+1 

49. Prove that the number of permutations of at most m A's and at most n B's 
equals 

( m +n+ 2) _ 1. 
m+1 

50. In how many ways can five identical rooks be placed on the squares of an 8-by-8 
board so that four of them form the corners of a rectangle with sides parallel to 
the sides of the board? 

51. Consider the multiset {n . a, 1, 2,3, ... , n} of size 2n. Determine the number of 
its n-combinations. 

52. Consider the multiset {n· a, n . b, 1, 2, 3, ... ,n + I} of size 3n + 1. Determine the 
number of its n-combinations. 
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53. Find a one-to-one correspondence between the permutations of the set {l, 2, ... ,n} 
and the towers Ao C Al C A2 C .. , C An where IAkl = k for k = 0, 1,2, ... ,n. 

54. Determine the number of towers of the form 0 t;;; A ~ B t;;; {l, 2, ... ,n}. 

55. How many permutations are there of the letters in the words 

(a) TRISKAIDEKAPHOBIA (fear of the number 13)? 

(b) FLOCCINAUCINIHILIPILIFICATION (estimating something as worth­
less)? 

(c) PNEUMONOULTRAMICROSCOPICSILICOVOLCANOCONIOSIS (a lung disease 
caused by inhaling fine particles of silica)? (This word is, by some accounts, 
the longest word in the English language.) 

(d) DERMATOGLYPHICS (skin patterns or the study of them)? (This word 
is the (current) longest word in the English language that doesn't repeat a 
letter; another word of the same length is UNCOPYRIGHTABLE.13) 

56. What is the probability that a poker hand contains a flush (that is, five cards of 
the same suit)? 

57. What is the probability that a poker hand contains exactly one pair (that is, a 
poker hand with exactly four different ranks)? 

58. What is the probability that a poker hand contains cards of five different ranks 
but does not contain a flush or a straight? 

59. Consider the deck of 40 cards obtained from an ordinary deck of 52 cards by 
removing the jacks (11s), queens (12s), and kings (13s), where now the 1 (ace) 
can be used to follow a 10. Compute the probabilities for the various poker 
hands described in the example in Section 3.6. 

60. A bagel store sells six different kinds of bagels. Suppose you choose 15 bagels at 
random. What is the probability that your choice contains at least one bagel of 
each kind? If one of the kinds of bagels is Sesame, what is the probability that 
your choice contains at least three Sesame bagels? 

61. Consider an 9-by-9 board and nine rooks of which five are red and four are blue. 
Suppose you place the rooks on the board in nonattacking positions at random. 
What is the probability that the red rooks are in rows 1,3,5,7, 9? What is 
the probability that the red rooks are both in rows 1,2,3,4,5 and in columns 
1,2,3,4,5? 

13 Anu Garg: The Dord, the Diglot, and An Avocado or Two, Plume, Penguin Group, New York 
(2007). 
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62. Suppose a poker hand contains seven cards rather than five. Compute the prob-
abilities of the following poker hands: 

(a) a seven-card straight 

(b) four cards of one rank and three of a different rank 

(c) three cards of one rank and two cards of each of two different ranks 

(d) two cards of each of three different ranks, and a card of a fourth rank 

(e) three cards of one rank and four cards of each of four different ranks 

(f) seven cards each of different rank 

63. Four (standard) dice (cubes with 1, 2,3, 4, 5, 6, respectively, dots on their six 
faces), each of a different color, are tossed, each landing with one of its faces up, 
thereby showing a number of dots. Determine the following probabilities: 

(a) The probability that the total number of dots shown is 6 

(b) The probability that at most two of the dice show exactly one dot 

(c) The probability that each die shows at least two dots 

(d) The probability that the four numbers of dots shown are all different 

(e) The probability that there are exactly two different numbers of dots shown 

64. Let n be a positive integer. Suppose we choose a sequence iI, i2 , •.. , in of integers 
between 1 and n at random. 

(a) What is the probability that the sequence contains exactly n - 2 different 
integers? 

(b) What is the probability that the sequence contains exactly n - 3 different 
integers? 


