
Chapter 3 

The Pigeonhole Principle 

We consider in this chapter an important, but elementary, combinatorial principle 
that can be used to solve a variety of interesting problems, often with surprising 
conclusions. This principle is known under a variety of names, the most common of 
which are the pigeonhole principle, the Dirichlet drawer principle, and the shoebox 
principleJ Formulated as a principle about pigeonholes, it says roughly that if a lot 
of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be 
occupied by two or more pigeons. A more precise statement is given below. 

3.1 Pigeonhole Principle: Simple Form 

The simplest form of the pigeonhole principle is the following fairly obvious assertion. 

Theorem 3.1.1 If n + 1 objects are distributed into n boxes, then at least one box 
contains two or more of the objects. 

Proof. The proof is by contradiction. If each of the n boxes contains at most one 
{)f the objects, then the total number of objects is at most 1 + 1 + ... + l(n Is) = n. 
Since we distribute n + 1 objects, some box contains at least two of the objects. 0 

Notice that neither the pigeonhole principle nor its proof gives any help in finding 
a box that contains two or more of the objects. They simply assert that if we examine 
each of the boxes, we will come upon a box that contains more than one object. The 
pigeonhole principle merely guarantees the existence of such a box. Thus, whenever 
the pigeonhole principle is applied to prove the existence of an arrangement or some 
phenomenon, it will give no indication of how to construct the arrangement or find an 
instance of the phenomenon other than to examine all possibilities. 

'The word shoebox is a mistranslation and folk etymology for the German Schubfach, which means 
"pigeonhole" (in a desk). 
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Notice also that the conclusion of the pigeonhole principle cannot be guaranteed if 
there are only n (or fewer) objects. This is because we may put a different object in 
each of the n boxes. Of course, it is possible to distribute as few as two objects among 
the boxes in such'a way that a box contains two objects, but there is no guarantee that 
a box will contain two or more objects unless we distribute at least n + 1 objects. The 
pigeonhole principle asserts that, no matter how we distribute n + 1 objects among n 
boxes, we cannot avoid putting two objects in the same box. . 

Instead of putting objects into boxes, we may think of coloring each object with 
one of n colors. The pigeonhole prinGiple asserts that if n + 1 objects are colored with 
n colors, then two objects have the salIi.e 'color. 

We begin with two simple applications: 

Application 1. Among 13 people there are 2 who have their birthdays in the same 
month, 0 

Application 2, There are n married couples. How many of the 2n people must be 
selected to guarantee that a married couple has been selected? 

To apply the pigeonhole principle in this case, think of n boxes, one corresponding 
to each of the n couples. If we select n + 1 people and put each of them in the box 
corresponding to the couple to which they belong, then some box contains two people; 
that is, we have selected a married couple. Two of the ways to select n people without 
getting a married couple are to select all the husbands or all the wives. Therefore, 
n + 1 is the smallest number that will guarantee a married couple has been selected. 
o 

There are other principles related to the pigeonhole principle that are worth stating 
formally: 

• If n objects are put into n boxes and no box is empty, then each box contains 
exactly one object. 

• If n objects are put into n boxes and no box gets more than one object, then each 
box has an object in it. 

Referring to Application 2, if we select n people in such a way that we have selected 
at least one person from each married couple, then we have selected exactly one person 
from each couple. Also, if we select n people without selecting more than one person 
from each married couple, then we have selected at least one (and, hence, exactly one) 
person from each couple. 

More abstract formulations of the three principles enunciated thus far are as fol­
lows: 

Let X and Y be finite sets and let f : X -> Y be a function from X to Y. 
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• If X has more elements than Y, then f is not one-to-one. 

• If X and Y have the same number of elements and f is onto, then f is one-to­
one. 

• If X and Y have the same number of elements and f is one-to-one, then f is 
onto. 

Application 3. Given m integers aI, a2, ... ,am, there exist integers k and I with 
o S k < ISm such that ak+1 + ak+2 + ... + al is divisible by m. Less formally, there 
exist consecutive a's in the sequence aI, a2, . .. ,am whose sum is divisible by m. 

To see this, consider the m sums 

If any of these sums is divisible by m, then the conclusion holds. Thus, we may 
suppose that each of these sums has a nonzero remainder when divided by m, and so 
a remainder equal to one of 1,2, ... ,m - 1. Since there are m sums and only m - 1 
remainders, two of the sums have the same remainder when divided by m. Therefore, 
there are integers k and I with k < I such that al + a2 + ... + ak and al + a2 + ... + al 

have the same remainder r when divided by m: 

al + a2 + ... + ak = bm + r, al + a2 + ... + al = em + r. 

Subtracting, we find that ak+l + ... + al = (e - b)m; thus, ak+1 + ... + al is divisible 
bym. 

To illustrate this argument,2 let m = 7 and let our integers be 2,4,6,3,5,5, and 
6. Computing the sums as before, we get 2,6,12,15,20, 25, and 31 whose remainders 
when divided by 7 are, respectively, 2,6,5, 1, 6,4, and 3. We have two remainders 
equal to 6, and this implies the conclusion that 6 + 3 + 5 = 14 is divisible by 7. 0 

Application 4. A chess master who has 11 weeks to prepare for a tournament decides 
to play at least one game every day but, to avoid tiring himself, he decides not to play 
more than 12 games during any calendar week. Show that there exists a succession of 
(consecutive) days during which the chess master will have played exactly 21 games. 

Let al be the number of games played on the first day, a2 the total number of games 
played on the first and second days, a3 the total number of games played on the first, 
second, and third days, and so on. The sequence of numbers al, a2, ... ,an is a strictly 
increasing sequence3 since at least one game is played each day. Moreover, al ;::: 1, 

2The argument actually contains a nice algorithm, whose validity relies on the pigeonhole principle, 
for finding the consecutive a's, which is more efficient than examining all sums of consecutive a's. 

3Each term of the sequence is larger than the one that precedes it. 
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and since at most 12 games are played during anyone week, a77 ~ 12 x 11 = 132.4 
Hence, we have 

1 ~ al < a2 < ... < a77 ~ 132. 

The sequence al + 21, a2 + 21, ... , an + 21 is also a strictly increasing sequence: 

22 ~ al + 21 < a2 + 21 < ... < a77 + 21 ~ 132 + 21 = 153. 

Thus each of the 154 numbers 

is an integer between 1 and 153. It follows that two of them are equal. Since no 
two of the numbers aI, a2, ... , an are equal and no two of the numbers al + 21, a2 + 
21, ... , a77 + 21 are equal, there must be an i and a j such that ai = aj + 21. Therefore, 
on days j + 1, j + 2, ... , i the chess master played a total of 21 games. 0 

Application 5. From the integers 1,2, ... ,200, we choose 101 integers. Show that, 
among the integers chosen, there are two such that one of them is divisible by the 
other. 

By factoring out as many 2s as possible, we see that any integer can be written in 
the form 2k x a, where k ;::: 0 and a is odd. For an integer between 1 and 200, a is one 
of the 100 numbers 1,3,5, ... ,199. Thus among the 101 integers chosen, there are two 
having a's of equal value when written in this form. Let these two numbers be 2T x a 
and 28 x a. If r < s, then the second number is divisible by the first. If r > s, then 
the first is divisible by the second. 0 

Let us note that the result of Application 5 is the best possible in the sense that 
we may select 100 integers from 1,2, ... ,200 in such a way that no one of the selected 
integers is divisible by any other (for instance, the 100 integers 101,102, ... , 199,200). 

We conclude this section with another application from number theory. First, we 
recall that two positive integers m and n are said to be relatively prime if their greatest 
common divisor5 is 1. Thus 12 and 35 are relatively prime, but 12 and 15 are not 
since 3 is a common divisor of 12 and 15. 

Application 6. (Chinese remainder theorem) Let m and n be relatively prime positive 
integers, and let a and b be integers where 0 ~ a ~ m - 1 and 0 ~ b ~ n - 1. Then 
there is a positive integer x such that the remainder when x is divided by m is a, 
and the remainder when x is divided by n is b; that is, x can be written in the form 
x = pm + a and also in the form x = qn + b for some integers p and q. 

4This is the only place where the assumption that at most 12 games are played during any of the 
11 calendar weeks is used. Thus, this assumption could be replaced by the assumption that at most 
132 games are played in 77 days. 

5 Also called greatest common factor or highest common factor. 
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To show this, we consider the n integers 

a,m + a,2m +a, ... , (n -l)m +a. 

Each of these integers has remainder a when divided by m. Suppose that two of them 
had the same remainder r when divided by n. Let the two numbers be im + a and 
jm + a, where 0 :S i < j :S n - 1. Then there are integers qi and qj such that 

im+ a = qin+r 

and 

jm + a = qjn + r. 
Subtracting the first equation from the second, we get 

(j - i)m = (qj - qi)n. 

The preceding equation tells us that n is a factor of the number (j - i)m. Since n has 
no common factor other than 1 with m, it follows that n is a factor of j - i. However, 
o :S i < j :S n - 1 implies that 0 < j - i :S n - 1, and hence n cannot be a factor of 
j - i. This contradiction arises from our supposition that two of the numbers 

a,m + a,2m + a, ... , (n - l)m +a 

had the same remainder when divided by n. We conclude that each of these n numbers 
has a different remainder when divided by n. By the pigeonhole principle, each of the 
n numbers 0, 1, ... , n - 1 occurs as a remainder; in particular, the number b does. Let 
p be the integer with 0 :S p :S n - 1 such that the number x = pm + a has remainder 
b when divided by n. Then, for some integer q, 

x = qn + b. 

So x = pm + a and x = qn + b, and x has the required properties. o 

The fact that a rational number alb has a decimal expansion that eventually 
repeats is a consequence of the pigeonhole principle, and we leave a proof of this fact 
for the Exercises. 

For further applications we need a stronger form of the pigeonhole principle. 

3.2 Pigeonhole Principle: Strong Form 

The following theorem contains Theorem 3.1.1 as a special case: 
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Theorem 3.2.1 Let ql, q2, . .. ,qn be positive integers. If 

ql + q2 + ... + qn - n + 1 

objects are distributed into n boxes, then either the first box contains at least ql objects, 
or the second box contains at least q2 objects, ... , or the nth box contains at least qn 

objects. 

Proof. Suppose that we distribute ql + q2 + ... + qn - n + 1 objects among n boxes. 
If for each i = 1,2, ... , n the ith box contains fewer than qi objects, then the total 
number of objects in all boxes does not exceed 

Since this number is one less than the number of objects distributed, we conclude that 
for some i = 1,2, ... ,n the ith box contains at least qi objects. 0 

Notice that it is possible to distribute ql + q2 + ... + qn - n objects among n boxes 
in such a way that for no i = 1,2, ... , n is it true that the ith box contains qi or more 
objects. We do this by putting ql - 1 objects into the first box, q2 - 1 objects into the 
second box, and so on. 

The simple form of the pigeonhole principle is obtained from the strong form by 
taking ql = q2 = ... = qn = 2. Then 

ql + q2 + ... + qn - n + 1 = 2n - n + 1 = n + 1. 

In terms of coloring, the strong form of the pigeonhole principle asserts that if each of 
ql + q2 + ... + qn - n + 1 objects is assigned one of n colors, then there is an i such 
that there are (at least) qi objects of the ith color. 

In elementary mathematics the strong form of the pigeonhole principle is most 
often applied in the special case when ql, q2, ... ,qn are all equal to some integer r. We 
formulate this special case as a corollary. 

Corollary 3.2.2 Let nand l' be positive integers. If n(r -1) + 1 objects are distributed 
into n boxes, then at least one of the boxes contains l' or more of the objects. 

Another way to formulate the assertion in this corollary is as an averaging principle: 

If the average of n nonnegative integers ml, m2, ... ,mn is greater than l' - 1, 
that is, 

ml + m2 + ... + mn 1 
--''----=-----.:.: > l' - , 

n 
then at least one of the integers is greater than or equal to r. 
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The connection between the assertion in Corollary 3.2.2 and this averaging prin­
ciple is seen by taking n(r - 1) + 1 objects and putting them into n boxes. For 
i = 1,2, ... , n, let mi be the number of objects in the ith box. Then the average of 
the numbers ml, m2, ... , mn is 

ml + m2 + ... + mn = n(r - 1) + 1 = (r _ 1) + .!.. 
n n n 

Since this average is greater than r - 1, one of the integers mi is at least r. In other 
words, one of the boxes contains at least r objects. 

A different averaging principle is the following: 

If the average of n nonnegative integers ml, m2,.' ., mn is less than r + 1, that 
is, 

ml +m2+ ... +mn 
---''----=----~ < r + 1, 

n 
then at least one of the integers is less than r + 1. 

Application 7. A basket of fruit is being arranged out of apples, bananas, and 
oranges. What is the smallest number of pieces of fruit that should be put in the 
basket to guarantee that either there are at 'least eight apples or at least six bananas 
or at least nine oranges? 

By the strong form of the pigeonhole principle, 8 + 6 + 9 - 3 + 1 = 21 pieces of fruit, 
no matter how selected, will guarantee a basket of fruit with the desired properties. 
But 7 apples, 5 bananas, and 8 oranges, a total of 20 pieces of fruit, will not. 0 

The following is yet another averaging principle: 

• If the average of n nonnegative integers ml, m2, ... , mn is at least equal to r, 
then at least one of the integers ml, m2, ... , mn satisfies mi 2: r. 

Application 8. Two disks, one smaller than the other, are each divided into 200 
congruent sectors.6 In the larger disk, 100 of the sectors are chosen arbitrarily and 
painted red; the other 100 sectors are painted blue. In the smaller disk, each sector is 
painted either red or blue with no stipulation on the number of red and blue sectors. 
The small disk is then placed on the larger disk so that their centers coincide. Show 
that it is possible to align the two disks so that the number of sectors of the small disk 
whose color matches the corresponding sector of the large disk is at least 100. 

To see this, we observe that if the large disk is fixed in place, there are 200 possible 
positions for the small disk such that each sector of the small disk is contained in a 
sector of the large disk. We first count the total number of color matches over all of 

6Two hundred equal slices of a pie. 
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the 200 possible positions of the disks. Since the large disk has 100 sectors of each 
of the two colors, each sector of the small disk will match in color the corresponding 
sector of the large disk in exactly 100 of the 200 possible positions. Thus, the total 
number of color matches over all the positions equals the number of sectors of the 
small disk multiplied by 100, and this equals 20,000. Therefore, the average number 
of color matches per position is 20,000/200=100. So there must be some position with 
at least 100 color matches. 0 

We next present an application that was first discovered by Erdos and Szekeres.7 

Application 9. Show that every sequence aI, a2, ... ,an2+1 of n 2 + 1 real numbers 
contains either an increasing subsequence of length n + 1 or a decreasing subsequence 
of length n + 1. 

We first clarify the notion of a subsequence. If bl , b2, . .. ,bm is a sequence, then 
bil , bi2 , ... ,bik is a subsequence, provided that 1 :'S il < i2 < ... < ik :'S m. Thus 
b2, b4 , b5 , b6 is a subsequence of bl , b2, .. . ,b8 , but b2, b6, b5 is not. The subsequence 
bil , bi2 ,· .. ,bik is increasing (more properly not decreasing) if bi, :'S bi2 :'S ... :'S bik and 
decreasing if bil 2 bi2 2 ... 2 bik· 

We now prove the assertion. We suppose that there is no increasing subsequence 
of length n + 1 and show that there must be a decreasing subsequence oflength n + 1. 
For each k = 1,2, ... ,n2 + 1, let mk be the length of the longest increasing subsequence 
that begins with ak. Suppose mk :'S n for each k = 1,2, ... ,n2 + 1, so that there is no 
increasing subsequence of length n + 1. Since mk 2 1 for each k = 1,2, ... ,n2 + 1, the 
numbers ml, m2, ... , m n2+1 are n 2 + 1 integers each between 1 and n. By the strong 
form of the pigeonhole principle, n + 1 of the numbers ml, m2, . .. , m n2+1 are equal. 
Let 

mk, = mk2 = ... = mkn+l , 

where 1 :'S kl < k2 < ... < kn+l :'S n2 + 1. Suppose that for some i = 1,2, ... , n, 
ak. < ak.+ l · Then, since ki < ki+1 we could take a longest increasing subsequence 
beginning with akHl and put ak, in front to obtain an increasing subsequence beginning 
with aki. Since this implies that mki > mk,+l' we conclude that aki 2 aki+!. Since 
this is true for each i = 1,2, ... ,n, we have 

and we conclude that ak" ak2' ... ,akn+l is a decreasing subsequence of length n + 1. 
o 

An amusing formulation of Application 9 is the following: Suppose that n2 + 1 
people are lined up shoulder to shoulder in a straight line. Then it is always possible 
to choose n + 1 of the people to take one step forward so that, going from left to right, 

7p. Erdos and A. Szekeres, A Combinatorial Problem in Geometry, Compositio Mathematica, 2 
(1935),463-470. 



3.3. A THEOREM OF RAMSEY 77 

either their heights are increasing or their heights are decreasing. It is instructive to 
read through the proof of Application 9 in these terms. 

3.3 A Theorem of Ramsey 

We now discuss a profound and important generalization of the pigeonhole principle 
called Ramsey's theorem, after the English logician Frank Ramsey.8 

The following is the most popular and easily understood instance of Ramsey's 
theorem: 

Of six (or more) people, either there are three, each pair of whom are 
acquainted, or there are three, each pair of whom are unacquainted. 

One way to prove this result is to examine all the different ways in which six people 
can be acquainted and unacquainted. This is a tedious task, but nonetheless one that 
can be accomplished with a little fortitude. There is, however, a simple and elegant 
proof that avoids consideration of cases. Before giving this proof, we formulate the 
result more abstractly as 

(3.1) 

What does this mean? First, by K6 we mean a set of six objects (e.g., people) and 
all of the 15 (unordered) pairs of these objects. We can picture K6 by choosing six 
points in the plane, no three of which are collinear, and then drawing the edge or line 
segment connecting each pair of points (the edges now represent the pairs). In general, 
we mean by Kn a set of n objects and all of the pairs of these objects.9 Illustrations 
for Kn (n = 1,2,3,4,5) are given in Figure 3.1. Notice that the picture of K3 is that 
of a triangle, and we often refer to K3 as a triangle . 

• • • 

Figure 3.1 

We distinguish between acquainted pairs and unacquainted pairs by coloring edges 
red for acquainted and blue for unacquainted. "Three mutually acquainted people" 

8Frank Ramsey was born in 1903 and died in 1930 when he was not quite 27 years of age. In spite 
of his premature death, he laid the foundation for what is now called Ramsey theory. 

gIn later chapters, Kn is called the complete graph of order n. 
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now means "a K3 each of whose edges is colored red: a red K3." Similarly, three 
mutually unacquainted people form a blue- K 3 . We can now explain the expression 
(3.1): 

K6 -> K 3, K3 is the assertion that no matter how the edges of K6 are 
colored with the colors red and blue, there is always a red K3 (three of the 
original six points with the three line segments between them all colored red) 
or a blue K3 (three of the original six points with the three line segments 
between them all colored blue), 'in short, a monochromatic triangle. 

To prove that K6 -> K 3, K3, we argue as follows: Suppose the edges of K6 have 
been colored red or blue in any way. Consider one of the points p of K6. It meets 
five edges. Since each of these five edges is colored red or blue, it follows (from the 
strong form of the pigeonhole principle) that either at least three of them are colored 
red or at least three of them are colored blue. We suppose that three of the five edges 
meeting the point p are red. (If three are blue, a similar argument works.) Let the 
three red edges meeting p join p to points a, b, and c, respectively. Consider the edges 
which join a, b, c in pairs. If all of these are blue, then a, b, c determine a blue K 3. If 
one of them, say the one joining a and b, is red, then p, a, b determine a red K 3 . Thus, 
we are guaranteed either a red K3 or a blue K 3. 

We observe that the assertion K5 -> K3, K3 is false. This is because there is some 
way to color the edges of K5 without creating a red K3 or a blue K 3. This is shown 
in Figure 3.2, where the edges of the pentagon (the solid edges) are the red edges and 
the edges of the inscribed pentagram (the dashed edges) are the blue edges. 

Figure 3.2 

We now state and prove Ramsey's theorem, although still not in its full generality. 

Theorem 3.3.1 If m 2: 2 and n 2: 2 are integers, then there is a positive integer p 
such that 

In words, Ramsey's theorem asserts that given m and n there is a positive integer 
p such that, if the edges of Kp are colored red or blue, then either there is a red Km 
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or there is a blue Kn. The existence of either a red Km or a blue Kn is guaranteed, 
no matter how the edges of Kp are colored. If Kp ~ K m, K n, then Kq -+ Km, Kn for 
every integer q ~ p. The Ramsey number r(m, n) is the smallest integer p such that 
Kp -+ K m, Kn. Thus Ramsey's theorem asserts the existence of the number r(m, n). 
By interchanging the colors red and blue, we see that 

r(m, n) = r(n, m). 

r(3,3) = 6. 

The Ramsey numbers r(2, n) and r(m,2) are easy to determine. We show that 
r.(2,n) = n: 

r(2, n) ::; n: If we color the edges of Kn either red or blue, then either some edge is 
colored red (and so we have a red K2) or all edges are blue (and so we have a blue 
Kn). 

r(2, n) > n - 1: If we color all the edges of Kn - 1 blue, then we have neither a red K2 
nor a blue K n . 

In a similar way, we show that r(m, 2) = m. The numbers r(2, n) and r(m, 2) with 
m, n ~ 2 are the trivial Ramsey numbers. 

Proof of Theorem 3.3.1. We show the existence of the numbers r( m, n) by using 
(double) induction on both integer parameters m ~ 2 and n ~ 2. If m = 2, we know 
that r(2, n) = n, and if n = 2, we know that r( m, 2) = m. We now assume that m ~ 3 
and n ~ 3, and take as our inductive assumption that both r(m -1, n) and r(m, n-1) 
exist. Let p = r(m -l,n) +r(m,n -1). We will show that Kp ---t Km,Kn for this 
integer p. 

Suppose that the edges of Kp have been colored red or blue in any way. Consider 
one of the points x of Kn. Let Rx be the set of points that are joined to x by a red 
edge, and let Ex be the set of points that ar€ joined to x by a blue edge. Then 

IRxl + IExl = p - 1 = r(m - 1, n) + r(m, n - 1) - 1, 

implying that 

(1) IRxl ~ r(m -l,n), or 

(2) IExl ~ r(m,n-1). 

(If both (1) and (2) failed, then IRxl + IExl ::; rem - 1, n) - 1 + r(m, n -1) - 1 = p- 2, 
a contradiction.) 

Suppose that (1) holds. Let q = IRxl so that q ~ r(m - 1, n). Then considering 
Kq on the points of R x, we see that either there are m - 1 points of Kq (and so of 
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Kp) all of whose edges are colored red (that is, a red Km-l) or there are n points all 
of whose edges are colored blue (that is, a blue Kn). If the second possibility holds, 
we are done since we have a blue Kn. If the first possibility holds, we are also done 
since we can take the red K m - 1 and add the point x to it to obtain a red K m , since 
all edges joining x to the points in Rx are colored red. 

A similar argument works when (2) holds. We conclude by induction that the 
numbers r(m,n) exist for all integers m,n 2:: 2. 0 

Our proof of Theorem 3.3.1 not only shows that the Ramsey numbers r( m, n) exist, 
but also that they satisfy the inequality 

Let 

r(m,n) S r(m -l,n) + r(m,n - 1) (m,n 2:: 3). 

f(m,n) = (m+n-2) (m,n2::2). 
m-1 

Then, using Pascal's formula, we get that 

(m + n - 2) = (m + n - 3) + (m + n - 3) . 
m-1 m-1 m-2 

Hence 

f(m,n) = f(m -l,n) + f(m,n - 1) (m,n 2:: 3), 

(3.2) 

a relation similar to that of (3.2) but with equality: Since r(2,n) = n = f(2,n) and 
r(m,2) = m = f(m, 2), we conclude that the Ramsey number r(m, n) satisfies 

( ) (m + n - 2) _ (m + n - 2) r m,n < - . 
- m-1 n-1 

The following list lO contains known facts about nontrivial Ramsey numbers r(m, n): 

laThe paper "Small Ramsey Numbers" by S.P. Radziszowski, Electronic Journal of Combinatorics, 
Dynamic Survey #1, contains this and other information; see http://www.combinatorics.org. 
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r(3,3) = 6, 
r(3,4) = r(4,~) = 9, 
r(3,5) = r(5, 3) = 14, 
r(3,6) = r(6, 3) = 18, 
r(3,7) = r(7, 3) = 23, 
r(3,8) = r(8, 3) = 28, 
r(3,9) = r(9, 3) = 36, 
40 S r(3, 10) = r(lO, 3) S 43, 
r(4,4)=18, 
r(4,5) = r(5,4) = 25, 
35 S r(4,6) = r(6,4) S 41 
43 S r(5, 5) S 49 
58 S r(5,6) = r(6, 5) S 87 
102 S r(6, 6) S 165. 

Notice that the fact that r(3, 10) lies between 40 and 43 implies that 

and 
K39 -r K3, K lO · 

81 

Thus, there is no way to color the edges of K43 without creating either a red K3 or a 
blue K lO ; there is a way to color the edges of K39 without creating either a red K3 or a 
blue K lO , but neither of these conclusions is known to be true for K40, K 41 , and K42 . 
The assertion 43 S r(5, 5) S 49 implies that K59 --t K5, K5 and that there is a way to 
color the edges of K42 without creating a monochromatic K5. 

Ramsey's theorem generalizes to any number of colors. We give a very brief intro­
duction. If nl, n2, and n3 are integers greater than or equal to 2, then there exists an 
integer p such that 

In words, if each of the edges of Kp is colored red, blue, or green, then either there is a 
red Knl or a blue Kn2 or a green K n3 . The smallest integer p for which this assertion 
holds is the Ramsey number r(nl' n2, n3). The only nontrivial Ramsey number of this 
type that is known is 

r(3, 3, 3) = 17. 

Thus K17 --t K3, K3, K3 but K16 -r K3, K3,'K3 . The Ramsey numbersr(nl,n2, ... ,nk) 
are defined in a similar way, and Ramsey's theorem in its full generality for pairs asserts 
that these numbers exist; that is, there is an integer p such that 
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There is an even more general form of Ramsey's theorem in which pairs (subsets 
of two elements) are replaced by subsets of t elements for some fixed integer t ~ 1. 
Let 

denote the collection of all subsets of t elements of a set of n elements. Generalizing 
our preceding notation, we obtain the general form of Ramsey's theorem: 

Given integers t ~ 2 and integers ql, q2, ... , qk ~ t, there exists an integer p such 
that 

K t -> Kt Kt K t , 
P ql ' q2 ' .•• , qk . 

In words, there exists an integer p such that if each of the t-element subsets of a p­
element set is assigned one of k colors CI, C2, ... , Ck, then either there are ql elements, 
all of whose t-element subsets are assigned the color CI, or there are q2 elements, all 
of whose t-element subsets are assigned the color C2, ... , or there are qk elements, all 
of whose t-element subsets are assigned the color Ck. The smallest such integer p is 
the Ramsey number 

Suppose t = 1. Then rl(ql,q2,'" ,qk) is the smallest number p such that, if the 
elements of a set of p elements are colored with one of the colors CI, C2, ... ,Ck, then 
either there are ql elements of color CI, or q2 elements of color C2, ... ,or qk elements 
of color Ck. Thus, by the strong form of the pigeonhole principle, 

This demonstrates that Ramsey's theorem is a generalization of the strong form of the 
pigeonhole principle. 

The determination of the general Ramsey numbers rt(ql, q2, .. . ,qk) is a difficult 
problem. Very little is known about their exact values. It is not difficult to see that 

and that the order in which ql, q2, ... ,qk are listed does not affect the value of the 
Ramsey number. 

3.4 Exercises 

1. Concerning Application 4, show that there is a succession of days during which 
the chess master will have played exactly k games, for each k = 1,2, ... ,21. 
(The case k = 21 is the case treated in Application 4.) Is it possible to conclude 
that there is a succession of days during which the chess master will have played 
exactly 22 games? 
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,2. * Concerning Application 5, show that if 100 integers are chosen from 1,2, ... ,200, 
,and one of the integers chosen is less than 16, then there are two chosen numbers 
such that one of them is divisible by the other. 

3. Generalize Application 5 by choosing (how many?) integers from the set 

{l, 2, ... ,2n}. 

4. Show that if n + 1 integers are chosen from the set {I, 2, ... , 2n}, then there are 
always two which differ by 1. 

5. Show that if n + 1 distinct integers are chosen from the set {l, 2, ... , 3n}, then 
there are always two which differ by at most 2. 

6. Generalize Exercises 4 and 5. 

7. * Show that for any given 52 integers there exist two of them whose sum, or else 
whose difference, is divisible by 100. 

8. Use the pigeonhole principle to prove that the decimal expansion of a rational 
number min eventually is repeating. For example, 

34,478 
-- = 0.34512512512512512· ... 
99,900 

9. In a room there are 10 people, none of whom are older than 60 (ages are given in 
whole numbers only) but each of whom is at least 1 year old. Prove that we can 
always find two groups of people (with no common person) the sum of whose 
ages is the same. Can 10 be replaced by a smaller number? 

10. A child watches TV at least one hour each day for seven weeks but, because of 
parental rules, never more than 11 hours in anyone week. Prove that there is 
some period of consecutive days in which the child watches exactly 20 hours of 
TV. (It is assumed that the child watches TV for a whole number of hours each 
day.) 

11. A student has 37 days to prepare for an examination. From past experience she 
knows that she will require no more than 60 hours of study. She also wishes to 
study at least 1 hour per day. Show that no matter how she schedules her study 
time (a whole number of hours per d!1y, however), there is a succession of days 
during which she will have studied exactly 13 hours. 

12. Show by example that the conclusion of the Chinese remainder theorem (Appli­
cation 6) need not hold when m and n are not relatively prime. 
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13. * Let S be a set of six points in the plane, with no three of the points collinear. 
Color either red or blue each of the 15 line segments determined by the points of 
S. Show that there are at least two triangles determined by points of S which 
are either red triangles or blue triangles. (Both may be red, or both may be 
blue, or one may be red and the other blue.) 

14. A bag contains 100 apples, 100 bananas, 100 oranges, and 100 pears. If I pick 
one piece of fruit out of the bag every minute, how long will it be before I am 
assured of having picked at least a dozen pieces of fruit of the same kind? 

15. Prove that, for any n + 1 integers al, a2, ... ,an+1, there exist two of the integers 
ai and aj with i =f. j such that ai - aj is divisible by n. 

16. Prove that in a group of n > 1 people there are two who have the same number 
of acquaintances in the group. (It is assumed that no one is acquainted with 
oneself. ) 

17. There are 100 people at a party. Each person has an even number (possibly 
zero) of acquaintances. Prove that there are three people at the party with the 
same number of acquaintances. 

18. Prove that of any five points chosen within a square of side length 2, there are 
two whose distance apart is at most J2. 

19. (a) Prove that of any five points chosen within an equilateral triangle of side 
length 1, there are two whose distance apart is at most ~. 

(b) Prove that of any 10 points chosen within an equilateral triangle of side 
length 1, there are two whose distance apart is at most ~. 

(c) Determine an integer mn such that if mn points are chosen within an equi­
lateral triangle of side length 1, there are two whose distance apart is at 
most lin. 

20. Prove that r(3, 3, 3) :s: 17. 

21. * Prove that r(3, 3, 3) 2: 17 by exhibiting a coloring, with colors red, blue, and 
green, of the line segments joining 16 points with the property that there do not 
exist three points such that the three line segments joining them are all colored 
the same. 

22. Prove that 
r(~ :s: (k + 1)(r~) - 1) + 2. 

k+l k 

Use this result to obtain an upper bound for 

r~. 
n 
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23. The line segments joining 10 points are arbitrarily colored red or blue. Prove 
that there must exist three points such that the three line segments joining them 
are all red, or four points such that the six line segments joining them are all 
blue (that is, 1'(3,4) -:; 10). 

24. Let q3 and t be positive integers with q3 2: t. Determine the Ramsey number 
1't(t, t, q3). 

25. Let ql, q2,· .. , qko t be positive integers, where ql 2: t, q2 2: t, . .. , qk 2: t. Let m 
be the largest of ql, q2, .. . , qk· Show that 

Conclude that, to prove Ramsey's theorem, it is enough to prove it in the case 
that ql = q2 = ... = qk· 

26. Suppose that the mn people of a marching band are standing in a rectangular 
formation of m rows and n columns in such a way that in each row each person 
is taller than the one to his or her left. Suppose that the leader rearranges the 
people in each column in increasing order of height from front to back. Show 
that the rows are still arranged in increasing order of height from left to right. 

27. A collection of subsets of {I, 2, ... ,n} has the property that each pair of subsets 
has at least one element in common. Prove that there are at most 2n - l subsets 
in the collection. 

28. At a dance party there are 100 men and 20 women. For each i from 1,2, ... , 100, 
the ith man selects a group of a, women as potential dance partners (his "dance 
list," if you will), but in such a way that given any group of 20 men, it is always 
possible to pair the 20 men with the 20 women, with each man paired with a 
woman on his dance list. What is the smallest sum al + a2 + ... + awo for which 
there is a selection of dance lists that will guarantee this? 

29. A number of different objects have been distributed into n boxes B l , B2," . ,Bn­
All the objects from these boxes are removed and redistributed into n + 1 new 
boxes Bi, B2, ... , B~+l' with no new box empty (so the total number of objects 
must be at least n + 1). Prove that there are two objects each of which has the 
property that it is in a new box that contains fewer objects than the old box 
that contained it. 


