Chapter 1

What is Enumerative Combinatorics?

1.1 How to Count

The basic problem of enumerative combinatorics is that of counting the number of elements
of a finite set. Usually we are given an infinite collection of finite sets S; where 7 ranges over
some index set I (such as the nonnegative integers N), and we wish to count the number f(7)
of elements in each 5; “simultaneously.” Immediate philosophical difficulties arise. What
does it mean to “count” the number of elements of S;? There is no definitive answer to
this question. Only through experience does one develop an idea of what is meant by a
“determination” of a counting function f(i). The counting function f(i) can be given in
several standard ways:

1. The most satisfactory form of f(i) is a completely explicit closed formula involving only
well-known functions, and free from summation symbols. Only in rare cases will such a
formula exist. As formulas for f(i) become more complicated, our willingness to accept
them as “determinations” of f(i) decreases. Consider the following examples.

1.1.1 Example. For each n € N, let f(n) be the number of subsets of the set [n] =
{1,2,...,n}. Then f(n) = 2", and no one will quarrel about this being a satisfactory
formula for f(n).

1.1.2 Example. Suppose n men give their n hats to a hat-check person. Let f(n) be the
number of ways that the hats can be given back to the men, each man receiving one hat, so
that no man receives his own hat. For instance, f(1) = 0, f(2) = 1, f(3) = 2. We will see
in Chapter 2 (Example 2.2.1) that

f(n) :n!Z (_'1)2 (1.1)

o!

This formula for f(n) is not as elegant as the formula in Example 1.1.1, but for lack of
a simpler answer we are willing to accept (1.1) as a satisfactory formula. It certainly has
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the virtue of making it easy (in a sense that can be made precise) to compute the values
f(n). Moreover, once the derivation of (1.1) is understood (using the Principle of Inclusion-
Exclusion), every term of (1.1) has an easily understood combinatorial meaning. This enables
us to “understand” (1.1) intuitively, so our willingness to accept it is enhanced. We also
remark that it follows easily from (1.1) that f(n) is the nearest integer to n!/e. This is
certainly a simple explicit formula, but it has the disadvantage of being “non-combinatorial”;
that is, dividing by e and rounding off to the nearest integer has no direct combinatorial
significance.

1.1.3 Example. Let f(n) be the number of n x n matrices M of 0’s and 1’s such that every
row and column of M has three 1’s. For example, f(0) =1, f(1) = f(2) =0, f(3) = 1. The
most explicit formula known at present for f(n) is

(=1)7(8 +37)12* 37
al Bly12 67 ’

f(n) =6"n!? Z (1.2)

where the sum ranges over all (n 4+ 2)(n + 1)/2 solutions to « + 4+ v = n in nonnegative
integers. This formula gives very little insight into the behavior of f(n), but it does allow
one to compute f(n) much faster than if only the combinatorial definition of f(n) were
used. Hence with some reluctance we accept (1.2) as a “determination” of f(n). Of course
if someone were later to prove that f(n) = (n — 1)(n — 2)/2 (rather unlikely), then our
enthusiasm for (1.2) would be considerably diminished.

1.1.4 Example. There are actually formulas in the literature (“nameless here for evermore”)
for certain counting functions f(n) whose evaluation requires listing all (or almost all) of the
f(n) objects being counted! Such a “formula” is completely worthless.

2. A recurrence for f(i) may be given in terms of previously calculated f(j)’s, thereby
giving a simple procedure for calculating f(i) for any desired i € I. For instance, let f(n)
be the number of subsets of [n] that do not contain two consecutive integers. For example,
for n = 4 we have the subsets 0, {1}, {2}, {3}, {4}, {1,3}, {1,4}, {2,4}, so f(4) = 8. Tt is
easily seen that f(n) = f(n — 1) + f(n — 2) for n > 2. This makes it trivial, for example,
to compute f(20) = 17711. On the other hand, it can be shown (see Section 4.1 for the

underlying theory) that
1
n)=-—
f(n) 7
where 7 = (1 ++/5), 7 = 3(1 — v/5). This is an explicit answer, but because it involves
irrational numbers it is a matter of opinion (which may depend on the context) whether it
is a better answer than the recurrence f(n) = f(n — 1)+ f(n — 2).

(Tn+2 . 7—_n+2)

)

3. An algorithm may be given for computing f(i). This method of determining f subsumes
the previous two, as well as method 5 below. Any counting function likely to arise in practice
can be computed from an algorithm, so the acceptability of this method will depend on the
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elegance and performance of the algorithm. In general, we would like the time that it takes
the algorithm to compute f(i) to be “substantially less” than f(i) itself. Otherwise we are
accomplishing little more than a brute force listing of the objects counted by f(i). It would
take us too far afield to discuss the profound contributions that computer science has made
to the problem of analyzing, constructing, and evaluating algorithms. We will be concerned
almost exclusively with enumerative problems that admit solutions that are more concrete
than an algorithm.

4. An estimate may be given for f(i). If I = N, this estimate frequently takes the form
of an asymptotic formula f(n) ~ g(n), where g(n) is a “familiar function.” The notation
f(n) ~ g(n) means that lim, .., f(n)/g(n) = 1. For instance, let f(n) be the function of
Example 1.1.3. It can be shown that

f(n) ~ e 236"(3n)!.
For many purposes this estimate is superior to the “explicit” formula (1.2).

5. The most useful but most difficult to understand method for evaluating f (i) is to give
its generating function. We will not develop in this chapter a rigorous abstract theory of
generating functions, but will instead content ourselves with an informal discussion and
some examples. Informally, a generating function is an “object” that represents a counting
function f(i). Usually this object is a formal power series. The two most common types of
generating functions are ordinary generating functions and exponential generating functions.
If I =N, then the ordinary generating function of f(n) is the formal power series

> fn)an,
n>0
while the exponential generating function of f(n) is the formal power series
xn
> fn) T
n>0

(If I = P, the positive integers, then these sums begin at n = 1.) These power series are
called “formal” because we are not concerned with letting x take on particular values, and
we ignore questions of convergence and divergence. The term x™ or 2™ /n! merely marks the
place where f(n) is written.

If F(x) =3, .0an2", then we call a, the coefficient of 2 in F'(z) and write
a, = [z"|F(z).
Similarly, if F(z) =}_, -, a,2"/n!, then we write
a, = nl[z"|F(z).

In the same way we can deal with generating functions of several variables, such as

m .n

ZZZf(l,m,n)xyn!z

>0 m>0 n>0
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(which may be considered as “ordinary” in the indices [, m and “exponential” in n), or even
of infinitely many variables. In this latter case every term should involve only finitely many
of the variables. A simple generating function in infinitely many variables is x14+xo+x3+- - -.

Why bother with generating functions if they are merely another way of writing a counting
function? The answer is that we can perform various natural operations on generating
functions that have a combinatorial significance. For instance, we can add two generating
functions, say in one variable with I = N, by the rule

(Z Wm) + (Z bnx”) = (an +b,)a"

n>0 n>0 n>0

<Z an%> + (Z bn%> = > (an+ b))

n>0 n>0 n>0

Similarly, we can multiply generating functions according to the rule

(£} () - S

n>0 n>0 n>0

where ¢, = Y, aib,_;, or

" " "
where d, = Y7 (")azb,—;, with (%) = nl/il(n —4)!. Note that these operations are just
what we would obtain by treating generating functions as if they obeyed the ordinary laws
of algebra, such as 2%/ = 2"/, These operations coincide with the addition and multipli-
cation of functions when the power series converge for appropriate values of z, and they
obey such familiar laws of algebra as associativity and commutativity of addition and mul-
tiplication, distributivity of multiplication over addition, and cancellation of multiplication
(i.e., if F(x)G(x) = F(x)H(z) and F(x) # 0, then G(x) = H(x)). In fact, the set of all
formal power series ) ., a,2™ with complex coefficients a,, (or more generally, coefficients
in any integral domain R, where integral domains are assumed to be commutative with a
multiplicative identity 1) forms a (commutative) integral domain under the operations just
defined. This integral domain is denoted C[[z]] (or more generally, R[[x]]). Actually, C[[z]],
or more generally K[[z]] when K is a field, is a very special type of integral domain. For
readers with some familiarity with algebra, we remark that C[[z]] is a principal ideal domain
and therefore a unique factorization domain. In fact, every ideal of C[[z]] has the form (z™)
for some n > 0. From the viewpoint of commutative algebra, C|[[z]] is a one-dimensional
complete regular local ring. Moreover, the operation [2"] : C[[z]] — C of taking the coeffi-
cient of 2™ (and similarly [z"/nl]) is a linear functional on Cl[z]]. These general algebraic
considerations will not concern us here; rather we will discuss from an elementary viewpoint
the properties of C[[z]] that will be useful to us.
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There is an obvious extension of the ring C[[z]] to formal power series in m variables
Z1,...,Tm. The set of all such power series with complex coefficients is denoted C[[z1, . . ., ,,]]
and forms a unique factorization domain (though not a principal ideal domain for m > 2).

It is primarily through experience that the combinatorial significance of the algebraic op-
erations of C[[z]] or C[[z1,...,z,]] is understood, as well as the problems of whether to
use ordinary or exponential generating functions (or various other kinds discussed in later
chapters). In Section 3.18 we will explain to some extent the combinatorial significance of
these operations, but even then experience is indispensable.

If F(z) and G(z) are elements of Cl[x]] satisfying F'(z)G(z) = 1, then we (naturally) write
G(x) = F(z)~'. (Here 1 is short for 1+ 0z + 0z* + ---.) It is easy to see that F(z)™!
exists (in which case it is unique) if and only if ag # 0, where F(z) = ) ., a,2". One
commonly writes “symbolically” ag = F(0), even though F(z) is not considered to be a
function of x. If F(0) # 0 and F(2)G(x) = H(x), then G(z) = F(x) 'H(z), which we
also write as G(z) = H(z)/F(x). More generally, the operation ~! satisfies all the familiar
laws of algebra, provided it is only applied to power series F'(z) satisfying F'(0) # 0. For
instance, (F(z)G(z))™! = F(z)"'G(z)™!, (F(z)™')™' = F(z), and so on. Similar results
hold for C[[zy, ..., zp)].

1.1.5 Example. Let (3} ., a"2") (1 — az) = Y., ., 2", where a is nonzero complex
number. (We could also take a to be an indeterminate, in which case we should extend the
coefficient field to C(«), the field of rational functions over C in the variable a.) Then by
definition of power series multiplication,

- 1, n=0
n = a" —a(@™ ) =0, n>1.

Hence )7 . a"z™ = (1 — ax)™", which can also be written

n_.n 1
Zax T 1—az

n>0

This formula comes as no surprise; it is simply the formula (in a formal setting) for summing
a geometric series.

Example 1.1.5 provides a simple illustration of the general principle that, informally speaking,
if we have an identity involving power series that is valid when the power series are regarded
as functions (so that the variables are sufficiently small complex numbers), then this identity
continues to remain valid when regarded as an identity among formal power series, provided
the operations defined in the formulas are well-defined for formal power series. It would
be unnecessarily pedantic for us to state a precise form of this principle here, since the
reader should have little trouble justifying in any particular case the formal validity of our
manipulations with power series. We will give several examples throughout this section to
illustrate this contention.
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1.1.6 Example. The identity

(Z —) (zw%) - -

n>0 n>0

is valid at the function-theoretic level (it states that ee™® = 1) and is well-defined as a
statement involving formal power series. Hence (1.3) is a valid formal power series identity.
In other words (equating coefficients of 2" /n! on both sides of (1.3)), we have

zn:(—l)’“(Z) = Gon- (1.4)

k=0

To justify this identity directly from (1.3), we may reason as follows. Both sides of (1.3)
converge for all x € C, so we have

> (i(—U’“(Z)) %T —1, forallzeC.

n>0 \k=0

But if two power series in z represent the same function f(x) in a neighborhood of 0, then
these two power series must agree term-by-term, by a standard elementary result concerning
power series. Hence (1.4) follows.

1.1.7 Example. The identity

z+1)" z"
Z%:ezﬁ

n>0 n>0

is valid at the function-theoretic level (it states that e**' = e - e*), but does not make
sense as a statement involving formal power series. There is no formal procedure for writing
Y msol@ + 1)"/n! as a member of C[[z]]. For instance, the constant term of ) _ (z +
1)"/nlis > ., 1/n!, whose interpretation as a member of C[[z]] involves the consideration
of convergence.

Although the expression ) . (z+1)"/n! does not make sense formally, there are nevertheless
certain infinite processes that can be carried out formally in C[[z]]. (These concepts extend
straightforwardly to Cl[zy,...,z,]], but for simplicity we consider only C[[z]].) To define
these processes, we need to put some additional structure on C[[z]]—namely, the notion of
convergence. From an algebraic standpoint, the definition of convergence is inherent in the
statement that C[[z]] is complete in a certain standard topology that can be put on C[[z]].
However, we will assume no knowledge of topology on the part of the reader and will instead
give a self-contained, elementary treatment of convergence.

If Fi(x), F5(x),... is a sequence of formal power series, and if F'(z) = ) ., a,z" is another
formal power series, we say by definition that F;(z) converges to F(x) as i — oo, written
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Fi(z) — F(x) or lim;_, Fi(z) = F(x), provided that for all n > 0 there is a number §(n)
such that the coefficient of 2" in F;(z) is a,, whenever i > d(n). In other words, for every n
the sequence
[z"|Fy (), [2"]Fy(x), ...

of complex numbers eventually becomes constant (or stabilizes) with value a,. An equiv-
alent definition of convergence is the following. Define the degree of a nonzero formal
power series F(z) = ) _,a,x", denoted deg F(x), to be the least integer n such that
a, # 0. Note that deg F(z)G(z) = deg F(z) + deg G(x). Then F;(z) converges if and
only if lim; . deg(Fii1(z) — Fi(x)) = oo, and Fj(x) converges to F(z) if and only if
lim; o, deg(F(x) — Fi(z)) = oc.

We now say that an infinite sum » ;- Fj(x) has the value F'(z) provided that Z;:o Fi(z) —
F(x). A similar definition is made for the infinite product [[;-, F;(z). To avoid unimportant
technicalities we assume that in any infinite product [[,, F}(), each factor Fj(x) satisfies
Fi(0) = 1. -

For instance, let Fj(x) = aja?. Then for ¢ > n, the coefficient of 2™ in Z;:o Fi(x) is ay,.
Hence ..o Fj(x) is just the power series , ;a,2". Thus we can think of the formal
power series »_ ., a,x" as actually being the “sum” of its individual terms. The proofs of
the following two elementary results are left to the reader.

1.1.8 Proposition. The infinite series .. Fj(x) converges if and only if

lim deg F}j(x) = oc.
j—o0

1.1.9 Proposition. The infinite product [];,(1 + G;(z)), where G;(0) = 0, converges if
and only if lim;_ .., deg G,(z) = oc.

It is essential to realize that in evaluating a convergent series 2j>0 F;(z) (or similarly a
product [];5, Fj()), the coefficient of 2™ for any given n can be computed using only finite
processes. For if j is sufficiently large, say j > d(n), then deg F;j(z) > n, so that

é(n)
Y Fi(@) = Y Fio)

The latter expression involves only a finite sum.

The most important combinatorial application of the notion of convergence is to the idea
of power series composition. If F(z) = ) _,a,2™ and G(x) are formal power series with
G(0) = 0, define the composition F(G(z)) to be the infinite sum > ., a,G(x)". Since
deg G(z)" = n - deg G(x) > n, we see by Proposition 1.1.8 that F'(G(z)) is well-defined as
a formal power series. We also see why an expression such as e!™® does not make sense
formally; namely, the infinite series > .,(1 + x)"/n! does not converge in accordance with
the above definition. On the other hand, an expression like e¢" ! makes good sense formally,

since it has the form F'(G(z)) where F(z) = S2"/nl and G(x) = -, z"/n!.
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1.1.10 Example. If F(z) € C[[z]] satisfies F'(0) = 0, then we can define for any A € C the
formal power series

1+ Fa)yr=>" <A) F(x)", (1.5)

n
n>0

where (2) =AA—1)---(A=n+1)/nl. In fact, we may regard X\ as an indeterminate and
take (1.5) as the definition of (1 + F(z))* as an element of C[[z, \]] (or of C[\][[z]]; that is,
the coefficient of 2™ in (1+ F(z))" is a certain polynomial in \). All the expected properties
of exponentiation are indeed valid, such as

(1+ F(x)™* = (14 F(z)) 1+ F(x))",

regarded as an identity in the ring C[[z, A, u]], or in the ring C[[z]] where one takes A, u € C.

If F(z) =)_,>0 2", define the formal derivative F'(z) (also denoted 48 or DF(z)) to be
the formal power series

F'(z) = Znanx”_l = Z(n + Day 2"

n>0 n>0

It is easy to check that all the familiar laws of differentiation that are well-defined formally
continue to be valid for formal power series, In particular,

(F+G) = F'+d&
(FGQ) = F'G+FG
F(G(x)) = G'(2)F'(G(x)).

We thus have a theory of formal calculus for formal power series. The usefulness of this
theory will become apparent in subsequent examples. We first give an example of the use of
the formal calculus that should shed some additional light on the validity of manipulating
formal power series F'(x) as if they were actual functions of z.

1.1.11 Example. Suppose F(0) = 1, and let G(x) be the power series (easily seen to be
unique) satisfying
G'(z) = F'(z)/F(z), G(0)=0. (1.6)

From the function-theoretic viewpoint we can “solve” (1.6) to obtain F'(z) = exp G(x), where

by definition
exp G(z) = Z Glz) .

n!
n>0

Since G(0) = 0 everything is well-defined formally, so (1.6) should remain equivalent to
F(z) = expG(x) even if the power series for F(z) converges only at x = 0. How can
this assertion be justified without actually proving a combinatorial identity? Let F(x) =
14,51 an2™. From (1.6) we can compute explicitly G(z) = ) o, by2™, and it is quickly
seen that each b, is a polynomial in finitely many of the a;’s. It then follows that if exp G(x) =
1+ > ,5; cpx”, then each ¢, will also be a polynomial in finitely many of the a;’s, say
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¢n = pnlai, as, ..., ay), where m depends on n. Now we know that F'(x) = exp G(x) provided
14,51 anx™ converges. If two Taylor series convergent in some neighborhood of the origin
represent the same function, then their coefficients coincide. Hence a,, = p,(a1,as, ..., an)
provided 1+ )" ., a,z" converges. Thus the two polynomials a, and p,(a1,...,a,) agree
in some neighborhood of the origin of C™, so they must be equal. (It is a simple result
that if two complex polynomials in m variables agree in some open subset of C™, then they
are identical.) Since a,, = pp(a1,as,...,an) as polynomials, the identity F'(z) = exp G(z)
continues to remain valid for formal power series.

There is an alternative method for justifying the formal solution F'(x) = exp G(x) to (1.6),
which may appeal to topologically inclined readers. Given G(z) with G(0) = 0, define F'(z) =
exp G(z) and consider a map ¢ : C[[z]] — C[[z]] defined by ¢(G(z)) = G'(z) — P;(%). One
easily verifies the following: (a) if G converges in some neighborhood of 0 then ¢(G(x)) = 0;
(b) the set G of all power series G(x) € C[[z]] that converge in some neighborhood of 0 is
dense in C[[z]], in the topology defined above (in fact, the set C[z] of polynomials is dense);
and (c) the function ¢ is continuous in the topology defined above. From this it follows that

#(G(x)) = 0 for all G(z) € C[[z]] with G(0) = 0.

We now present various illustrations in the manipulation of generating functions. Through-
out we will be making heavy use of the principle that formal power series can be treated as
if they were functions.

1.1.12 Example. Find a simple expression for the generating function F(z) = -, a,2",
where ag = a1 =1, a, = ap_1 + an_o if n > 2. We have

F(x) = Zan:ﬂ”: 1+x+2&nx"

n>0 n>2
= l4+z+ g (ap_1 + ap_o)z"
n>2
= l+ao+ax E Ap_12" 4 22 E Y
n>2 n>2

= l+a+z(F(r)—1)+2°F(2).

Solving for F(x) yields F'(z) = 1/(1 — x — z*). The number a,, is just the Fibonacci number
F,+1. For some combinatorial properties of Fibonacci numbers, see Exercises 1.35-1.42.
For the general theory of rational generating functions and linear recurrences with constant
coefficients illustrated in the present example, see Section 4.1.

1.1.13 Example. Find a simple expression for the generating function F'(z) = ) ., a,z"/nl,
where ag = 1, -

(pi1 = Ap +nay_1, n>0. (1.7)

(Note that if n =0 we get a; = ag + 0 - a_1, so the value of a_; is irrelevant.) Multiply the
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recurrence (1.7) by 2"/n! and sum on n > 0. We get

xn
zw7=z%+zml
n

n>0 ’ n>0 n>0
== § &n _F E Ap— 1
n>0 n>1

The left-hand side is just F’(z), while the right-hand side is F'(x) + xF(x). Hence F'(z) =
(14 x)F(z). The unique solution to this differential equation satisfying F'(0) = 1 is F'(x) =
exp (x + %xQ) (As shown in Example 1.1.11, solving this differential equation is a purely
formal procedure.) For the combinatorial significance of the numbers a,,, see equation (5.32).

NoTE. With the benefit of hindsight we wrote the recurrence a,,1 = a, + na,_1 with
indexing that makes the computation simplest. If for instance we had written a,, = a,_1 +
(n—1)a,_», then the computation would be more complicated (though still quite tractable).
In converting recurrences to generating function identities, it can be worthwhile to consider
how best to index the recurrence.

1.1.14 Example. Let p(n) be the Mobius function of number theory; that is, pu(1) = 1,
wu(n) = 0 if n is divisible by the square of an integer greater than one, and u(n) = (—1)" if
n is the product of r distinct primes. Find a simple expression for the power series

F(z) = [ —am)y-im, (1.8)

First let us make sure that F(z) is well-defined as a formal power series. We have by
Example 1.1.10 that

(1 — g™y Hm/n — ; (‘“(:”)/ ”) (=1)'z™.

Note that (1 — z™)* =1+ H(x), where deg H(x) = n. Hence by Proposition 1.1.9 the
infinite product (1. 8) converges, so F'(x) is well-defined. Now apply log to (1.8). In other
words, form log F'(x), where

"
log(1+x) =) (—1)" 1;,
n>1

the power series expansion for the natural logarithm at z = 0. We obtain

log F(z) = logH 1 — gn)~Hm)/n

n>1
= = log(1 — &)/
n>1
_ Z pi(n) log(1 — 2
n
n>1
p(n) ™
O NE
n>1 i>1



The coefficient of 2™ in the above power series is
1
dlm
where the sum is over all positive integers d dividing m. It is well-known that
1 1, m=1
m ;u(d) N { 0, otherwise.

Hence log F(z) = z, so F(z) = e”. Note that the derivation of this miraculous formula
involved only formal manipulations.

1.1.15 Example. Find the unique sequence ag = 1, ay, as, ... of real numbers satisfying

n

> artn =1 (1.9)

k=0

for all n € N. The trick is to recognize the left-hand side of (1.9) as the coefficient of 2™ in
(ano @nxn>2- Letting F'(v) = _, -, a,2", we then have

F(x)2:Zx”: L

1—2a
n>0

Hence

SO

1-3-5---(2n—1)
2np| ’

Note that a, can also be rewritten as 47" (2:) The identity

(27;7’) = (—1)™4" (_711/2) (1.10)

can be useful for problems involving (2:)
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Now that we have discussed the manipulation of formal power series, the question arises as
to the advantages of using generating functions to represent a counting function f(n). Why,
for instance, should a formula such as

Zf(”)% = exp (x+%2) (1.11)

n>0

be regarded as a “determination” of f(n)? Basically, the answer is that there are many stan-
dard, routine techniques for extracting information from generating functions. Generating
functions are frequently the most concise and efficient way of presenting information about
their coefficients. For instance, from (1.11) an experienced enumerative combinatorialist can
tell at a glance the following:

1. A simple recurrence for f(n) can be found by differentiation. Namely, we obtain

Infl

Y f)— = (1+2)e ™ =(1+2)Y f(n)=.

= (n—1)!
Equating coefficients of x™/n! yields
f(n+1)=f(n)+nf(n—1), n>1

Note that in Example 1.1.13 we went in the opposite direction, i.e., we obtained the gener-
ating function from the recurrence, a less straightforward procedure.

2. An explicit formula for f(n) can be obtained from e*+@*/2) = ¢¢**/2, Namely,

Zf(n)% = e = (Z%) (Z ;n!>

n>0 n>0 n>0

" 2n)! "
a (Z H) (Z (Z”n)' (Zn)!) ’

n>0

1= 3 (a5 ) 2

ieven

so that

3. Regarded as a function of a complex variable, exp (a: + %) is a nicely behaved entire

function, so that standard techniques from the theory of asymptotic analysis can be used
to estimate f(n). As a first approximation, it is routine (for someone sufficiently versed in
complex variable theory) to obtain the asymptotic formula

]_ n 1
n/2 ,—o+y/n—z
n)~—m e 2 4, 112

No other method of describing f(n) makes it so easy to determine these fundamental proper-
ties. Many other properties of f(n) can also be easily obtained from the generating function;
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for instance, we leave to the reader the problem of evaluating, essentially by inspection of

(1.11), the sum
I W0 (1.13)

1=0

(see Exercise 1.7). Therefore we are ready to accept the generating function exp (x + %)

as a satisfactory determination of f(n).

This completes our discussion of generating functions and more generally the problem of
giving a satisfactory description of a counting function f(n). We now turn to the question
of what is the best way to prove that a counting function has some given description. In
accordance with the principle from other branches of mathematics that it is better to exhibit
an explicit isomorphism between two objects than merely prove that they are isomorphic, we
adopt the general principle that it is better to exhibit an explicit one-to-one correspondence
(bijection) between two finite sets than merely to prove that they have the same number
of elements. A proof that shows that a certain set S has a certain number m of elements
by constructing an explicit bijection between S and some other set that is known to have
m elements is called a combinatorial proof or bijective proof. The precise border between
combinatorial and non-combinatorial proofs is rather hazy, and certain arguments that to
an inexperienced enumerator will appear non-combinatorial will be recognized by a more
facile counter as combinatorial, primarily because he or she is aware of certain standard
techniques for converting apparently non-combinatorial arguments into combinatorial ones.
Such subtleties will not concern us here, and we now give some clear-cut examples of the
distinction between combinatorial and non-combinatorial proofs. We use the notation #5
or |S| for the cardinality (number of elements) of the finite set S.

1.1.16 Example. Let n and k be fixed positive integers. How many sequences (X1, X, ..., Xj)
are there of subsets of the set [n] = {1,2,...,n} such that X;NX,N---NX, = 07 Let f(k, n)
be this number. If we were not particularly inspired we could perhaps argue as follows. Sup-
pose X;NXoN---NXpy =T, where #T =i. fY; = X; =T, then Y1 N---NY,_y =0
and Y; C [n] —T. Hence there are f(k — 1,n — i) sequences (Xj,...,X;_1) such that
XiNXyN---NX,_; =T. For each such sequence, X, can be any of the 2"~% subsets
of [n] —T. As is probably familiar to most readers and will be discussed later, there are
(") = n!/il(n —©)! i-element subsets T of [n]. Hence

n

flkon) =Y (7;) =ik — 1,n— ). (1.14)

i=0
Let Fi(z) =3 50 f(k,n)z"/n!. Then (1.14) is equivalent to

Fi(z) = e Fj,_1(2x).
Clearly Fi(x) = e®. It follows easily that

Fp(r) = exp(x+2x+4da+---+ 28 1)
= exp((2" - )x)

= ) (2" - 1)“%.

n>0
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Hence f(k,n) = (2% —1)". This argument is a flagrant example of a non-combinatorial proof.
The resulting answer is extremely simple despite the contortions involved to obtain it, and
it cries out for a better understanding. In fact, (2% — 1)" is clearly the number of n-tuples
(Z1,Za,...,Zy,), where each Z; is a subset of [k] not equal to [k]. Can we find a bijection
6 between the set S, of all (X;,..., X}) C [n]* such that X; N---N X, = ), and the set
Tyn of all (Zy,...,7,) where [k] # Z; C [k]? Given an element (Zy,...,Z,) of Tj,, define
(X1,..., X)) by the condition that i € X if and only if j € Z;. This rule is just a precise
way of saying the following: the element 1 can appear in any of the X;’s except all of them,
so there are 2% — 1 choices for which of the X;’s contain 1; similarly there are 2¥ — 1 choices
for which of the X;’s contain 2,3, ..., n, so there are (2¥ —1)" choices in all. Thus the crucial
point of the problem is that the different elements of [n] behave independently, so we end up
with a simple product. We leave to the reader the (rather dull) task of rigorously verifiying
that 6 is a bijection, but this fact should be intuitively clear. The usual way to show that
is a bijection is to construct explicitly a map ¢ : Tj, — Skn, and then to show that ¢ = 6~ 1;
for example, by showing that ¢0(X) = X and that 6 is surjective. Caveat: any proof that
is bijective must not use a priori the fact that #Sy, = #7Tk,!

Not only is the above combinatorial proof much shorter than our previous proof, but it
also makes the reason for the simple answer completely transparent. It is often the case, as
occurred here, that the first proof to come to mind turns out to be laborious and inelegant,
but that the final answer suggests a simpler combinatorial proof.

1.1.17 Example. Verify the identity

é (CZL) (nb—z) - (aib)’ (1.15)

where a,b, and n are nonnegative integers. A non-combinatorial proof would run as fol-
lows. The left-hand side of (1.15) is the coefficient of z™ in the power series (polynomial)

(Xm0 (52 <2j20 (;’) xj). But by the binomial theorem,

SO (S0F) - 0o

— (1 4 x)a—l—b
(a + b) "
=2 =",
n
n>0
so the proof follows. A combinatorial proof runs as follows. The right-hand side of (1.15) is

the number of n-element subsets X of [a + b]. Suppose X intersects [a] in ¢ elements. There
are () choices for X N|a], and (niz) choices for the remaining n —i elements X N{a+1,a+

2,...,a+b}. Thus there are (‘Z) (nﬁz) ways that X N [a] can have i elements, and summing
over ¢ gives the total number (“:b) of n-element subsets of [a + b].

There are many examples in the literature of finite sets that are known to have the same
number of elements but for which no combinatorial proof of this fact is known. Some of
these will appear as exercises throughout this book.
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