
1.2 Sets and Multisets

We have (finally!) completed our description of the solution of an enumerative problem, and
we are now ready to delve into some actual problems. Let us begin with the basic problem
of counting subsets of a set. Let S = {x1, x2, . . . , xn} be an n-element set, or n-set for short.
Let 2S denote the set of all subsets of S, and let {0, 1}n = {(ε1, ε2, . . . , εn) : εi = 0 or 1}.
Since there are two possible values for each εi, we have #{0, 1}n = 2n. Define a map
θ : 2S → {0, 1}n by θ(T ) = (ε1, ε2, . . . , εn), where

εi =

{
1, if xi ∈ T
0, if xi 6∈ T.

For example, if n = 5 and T = {x2, x4, x5}, then θ(T ) = (0, 1, 0, 1, 1). Most readers will
realize that θ(T ) is just the characteristic vector of T . It is easily seen that θ is a bijection,
so that we have given a combinatorial proof that #2S = 2n. Of course there are many
alternative proofs of this simple result, and many of these proofs could be regarded as
combinatorial.

Now define
(
S
k

)
(sometimes denoted S(k) or otherwise, and read “S choose k”) to be the

set of all k-element subsets (or k-subsets) of S, and define
(
n
k

)
= #

(
S
k

)
, read “n choose k”

(ignore our previous use of the symbol
(
n
k

)
) and called a binomial coefficient. Our goal is to

prove the formula (
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
. (1.16)

Note that if 0 ≤ k ≤ n then the right-hand side of equation (1.16) can be rewritten n!/k!(n−
k)!. The right-hand side of (1.16) can be used to define

(
n
k

)
for any complex number (or

indeterminate) n, provided k ∈ N. The numerator n(n − 1) · · · (n− k + 1) of (1.16) is read
“n lower factorial k” and is denoted (n)k. Caveat. Many mathematicians, especially those
in the theory of special functions, use the notation (n)k = n(n + 1) · · · (n+ k − 1).

We would like to give a bijective proof of (1.16), but the factor k! in the denominator
makes it difficult to give a “simple” interpretation of the right-hand side. Therefore we use
the standard technique of clearing the denominator. To this end we count in two ways the
number N(n, k) of ways of choosing a k-subset T of S and then linearly ordering the elements
of T . We can pick T in

(
n
k

)
ways, then pick an element of T in k ways to be first in the

ordering, then pick another element in k − 1 ways to be second, and so on. Thus

N(n, k) =

(
n

k

)
k!.

On the other hand, we could pick any element of S in n ways to be first in the ordering,
then another element in n− 1 ways to be second, on so on, down to any remaining element
in n− k + 1 ways to be kth. Thus

N(n, k) = n(n− 1) · · · (n− k + 1).
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We have therefore given a combinatorial proof that
(
n

k

)
k! = n(n− 1) · · · (n− k + 1),

and hence of equation (1.16).

A generating function approach to binomial coefficients can be given as follows. Regard
x1, . . . , xn as independent indeterminates. It is an immediate consequence of the process of
multiplication (one could also give a rigorous proof by induction) that

(1 + x1)(1 + x2) · · · (1 + xn) =
∑

T⊆S

∏

xi∈T
xi. (1.17)

If we put each xi = x, then we obtain

(1 + x)n =
∑

T⊆S

∏

xi∈T
x =

∑

T⊆S
x#T =

∑

k≥0

(
n

k

)
xk, (1.18)

since the term xk appears exactly
(
n
k

)
times in the sum

∑
T⊆S x

#T . This reasoning is an
instance of the simple but useful observation that if S is a collection of finite sets such that
S contains exactly f(n) sets with n elements, then

∑

S∈S
x#S =

∑

n≥0

f(n)xn.

Somewhat more generally, if g : N→ C is any function, then
∑

S∈S
g(#S)x#S =

∑

n≥0

g(n)f(n)xn.

Equation (1.18) is such a simple result (the binomial theorem for the exponent n ∈ N) that
it is hardly necessary to obtain first the more refined (1.17). However, it is often easier in
dealing with generating functions to work with the most number of variables (indeterminates)
possible and then specialize. Often the more refined formula will be more transparent, and
its various specializations will be automatically unified.

Various identities involving binomial coefficients follow easily from the identity (1 + x)n =∑
k≥0

(
n
k

)
xk, and the reader will find it instructive to find combinatorial proofs of them. (See

Exercise 1.3 for further examples of binomial coefficient identities.) For instance, put x = 1
to obtain 2n =

∑
k≥0

(
n
k

)
; put x = −1 to obtain 0 =

∑
k≥0(−1)k

(
n
k

)
if n > 0; differentiate

and put x = 1 to obtain n2n−1 =
∑

k≥0 k
(
n
k

)
, and so on.

There is a close connection between subsets of a set and compositions of a nonnegative
integer. A composition of n can be thought of as an expression of n as an ordered sum of
integers. More precisely, a composition of n is a sequence α = (a1, . . . , ak) of positive integers
satisfying

∑
ai = n. For instance, there are eight compositions of 4; namely,

1 + 1 + 1 + 1 3 + 1
2 + 1 + 1 1 + 3
1 + 2 + 1 2 + 2
1 + 1 + 2 4.
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If exactly k summands appear in a composition α, then we say that α has k parts, and we call
α a k-composition. If α = (a1, a2, . . . , ak) is a k-composition of n, then define a (k−1)-subset
Sα of [n− 1] by

Sα = {a1, a1 + a2, . . . , a1 + a2 + · · ·+ ak−1}.

The correspondence α 7→ Sα gives a bijection between all k-compositions of n and (k − 1)-
subsets of [n − 1]. Hence there are

(
n−1
k−1

)
k-compositions of n and 2n−1 compositions of

n > 0. The inverse bijection Sα 7→ α is often represented schematically by drawing n dots
in a row and drawing vertical bars between k − 1 of the n − 1 spaces separating the dots.
This procedure divides the dots into k linearly ordered (from left-to-right) “compartments”
whose number of elements is a k-composition of n. For instance, the compartments

·| · ·| · | · | · · · | · · (1.19)

correspond to the 6-composition (1, 2, 1, 1, 3, 2) of 10. The diagram (1.19) illustrates another
very general principle related to bijective proofs — it is often efficacious to represent the
objects being counted geometrically.

A problem closely related to compositions is that of counting the number N(n, k) of solutions
to x1 +x2 + · · ·+xk = n in nonnegative integers. Such a solution is called a weak composition
of n into k parts, or a weak k-composition of n. (A solution in positive integers is simply a
k-composition of n.) If we put yi = xi+1, then N(n, k) is the number of solutions in positive
integers to y1 + y2 + · · ·+ yk = n+ k, that is, the number of k-compositions of n+ k. Hence
N(n, k) =

(
n+k−1
k−1

)
. A further variant is the enumeration of N-solutions (that is, solutions

where each variable lies in N) to x1 + x2 + · · ·+ xk ≤ n. Again we use a standard technique,
viz., introducing a slack variable y to convert the inequality x1 + x2 + · · · + xk ≤ n to the
equality x1+x2+· · ·+xk+y = n. An N-solution to this equation is a weak (k+1)-composition
of n, so the number N(n, k + 1) of such solutions is

(
n+(k+1)−1

k

)
=
(
n+k
k

)
.

A k-subset T of an n-set S is sometimes called a k-combination of S without repetitions. This
suggests the problem of counting the number of k-combinations of S with repetitions; that is,
we choose k elements of S, disregarding order and allowing repeated elements. Denote this
number by

((
n
k

))
, which could be read “n multichoose k.” For instance, if S = {1, 2, 3} then

the combinations counted by
((

3
2

))
are 11, 22, 33, 12, 13, 23. Hence

((
3
2

))
= 6. An equivalent

but more precise treatment of combinations with repetitions can be made by introducing the
concept of a multiset. Intuitively, a multiset is a set with repeated elements; for instance,
{1, 1, 2, 5, 5, 5}. More precisely, a finite multiset M on a set S is a pair (S, ν), where ν
is a function ν : S → N such that

∑
x∈S ν(x) < ∞. One regards ν(x) as the number of

repetitions of x. The integer
∑

x∈S ν(x) is called the cardinality, size, or number of elements
of M and is denoted |M |, #M , or cardM . If S = {x1, . . . , xn} and ν(xi) = ai, then we call
ai the multiplicity of xi in M and write M = {xa11 , . . . , x

an
n }. If #M = k then we call M

a k-multiset. The set of all k-multisets on S is denoted
((
S
k

))
. If M ′ = (S, ν ′) is another

multiset on S, then we say that M ′ is a submultiset of M if ν ′(x) ≤ ν(x) for all x ∈ S. The
number of submultisets of M is

∏
x∈S(ν(x) + 1), since for each x ∈ S there are ν(x) + 1

possible values of ν ′(x). It is now clear that a k-combination of S with repetition is simply
a multiset on S with k elements.
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Although the reader may be unaware of it, we have already evaluated the number
((
n
k

))
. If

S = {y1, . . . , yn} and we set xi = ν(yi), then we see that
((
n
k

))
is the number of solutions in

nonnegative integers to x1 + x2 + · · ·+ xn = k, which we have seen is
(
n+k−1
n−1

)
=
(
n+k−1

k

)
.

There are two elegant direct combinatorial proofs that
((
n
k

))
=
(
n+k−1

k

)
. For the first, let

1 ≤ a1 < a2 < · · · < ak ≤ n + k − 1 be a k-subset of [n + k − 1]. Let bi = ai − i + 1.
Then {b1, b2, . . . , bk} is a k-multiset on [n]. Conversely, given a k-multiset 1 ≤ b1 ≤ b2 ≤
· · · ≤ bk ≤ n on [n], then defining ai = bi + i − 1 we see that {a1, a2, . . . , ak} is a k-subset

of [n + k − 1]. Hence we have defined a bijection between
((

[n]
k

))
and

(
[n+k−1]

k

)
, as desired.

This proof illustrates the technique of compression, where we convert a strictly increasing
sequence to a weakly increasing sequence.

Our second direct proof that
((
n
k

))
=
(
n+k−1

k

)
is a “geometric” (or “balls into boxes” or “stars

and bars”) proof, analogous to the proof above that there are
(
n−1
k−1

)
k-compositions of n.

There are
(
n+k−1

k

)
sequences consisting of k dots and n−1 vertical bars. An example of such

a sequence for k = 5 and n = 7 is given by

|| · ·| · ||| · ·

The n − 1 bars divide the k dots into n compartments. Let the number of dots in the
ith compartment be ν(i). In this way the diagrams correspond to k-multisets on [n], so((
n
k

))
=
(
n+k−1

k

)
. For the example above, the multiset is {3, 3, 4, 7, 7}.

The generating function approach to multisets is instructive. In exact analogy to our treat-
ment of subsets of a set S = {x1, . . . , xn}, we have

(1 + x1 + x2
1 + · · · )(1 + x2 + x2

2 + · · · ) · · · (1 + xn + x2
n + · · · ) =

∑

M=(S,ν)

∏

xi∈S
x
ν(xi)
i ,

where the sum is over all finite multisets M on S. Put each xi = x. We get

(1 + x+ x2 + · · · )n =
∑

M=(S,ν)

xν(x1)+···+ν(xn)

=
∑

M=(S,ν)

x#M

=
∑

k≥0

((n
k

))
xk.

But

(1 + x+ x2 + · · · )n = (1− x)−n =
∑

k≥0

(−n
k

)
(−1)kxk, (1.20)

so
((
n
k

))
= (−1)k

(−n
k

)
=
(
n+k−1

k

)
. The elegant formula

((n
k

))
= (−1)k

(−n
k

)
(1.21)
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is no accident; it is the simplest instance of a combinatorial reciprocity theorem. A poset
generalization appears in Section 3.15.3, while a more general theory of such results is given
in Chapter 4.

The binomial coefficient
(
n
k

)
may be interpreted in the following manner. Each element of

an n-set S is placed into one of two categories, with k elements in Category 1 and n − k
elements in Category 2. (The elements of Category 1 form a k-subset T of S.) This suggests
a generalization allowing more than two categories. Let (a1, a2, . . . , am) be a sequence of
nonnegative integers summing to n, and suppose that we have m categories C1, . . . , Cm.
Let

(
n

a1,a2,...,am

)
denote the number of ways of assigning each element of an n-set S to one

of the categories C1, . . . , Cm so that exactly ai elements are assigned to Ci. The notation
is somewhat at variance with the notation for binomial coefficients (the case m = 2), but
no confusion should result when we write

(
n
k

)
instead of

(
n

k,n−k
)
. The number

(
n

a1,a2,...,am

)

is called a multinomial coefficient. It is customary to regard the elements of S as being n
distinguishable balls and the categories as being m distinguishable boxes. Then

(
n

a1,a2,...,am

)

is the number of ways to place the balls into the boxes so that the ith box contains ai balls.

The multinomial coefficient can also be interpreted in terms of “permutations of a multiset.”
If S is an n-set, then a permutation w of S can be defined as a linear ordering w1, w2, . . . , wn of
the elements of S. Think of w as a word w1w2 · · ·wn in the alphabet S. If S = {x1, . . . , xn},
then such a word corresponds to the bijection w : S → S given by w(xi) = wi, so that a
permutation of S may also be regarded as a bijection S → S. Much interesting combinatorics
is based on these two different ways of representing permutations; a good example is the
second proof of Proposition 5.3.2.

We write SS for the set of permutations of S. If S = [n] then we write Sn for S[n]. Since
we choose w1 in n ways, then w2 in n − 1 ways, and so on, we clearly have #SS = n!.
In an analogous manner we can define a permutation w of a multiset M of cardinality n
to be a linear ordering w1, w2, . . . , wn of the “elements” of M ; that is, if M = (S, ν) then
the element x ∈ S appears exactly ν(x) times in the permutation. Again we think of w
as a word w1w2 · · ·wn. For instance, there are 12 permutations of the multiset {1, 1, 2, 3};
namely, 1123, 1132, 1213, 1312, 1231, 1321, 2113, 2131, 2311, 3112, 3121, 3211. Let SM

denote the set of permutations of M . If M = {xa11 , . . . , x
am
m } and #M = n, then it is clear

that

#SM =

(
n

a1, a2, . . . , am

)
. (1.22)

Indeed, if xi appears in position j of the permutation, then we put the element j of [n] into
Category i.

Our results on binomial coefficients extend straightforwardly to multinomial coefficients. In
particular, we have (

n

a1, a2, . . . , am

)
=

n!

a1! a2! · · ·am!
. (1.23)

Among the many ways to prove this result, we can place a1 elements of S into Category 1
in
(
n
a1

)
ways, then a2 of the remaining n− a1 elements of [n] into Category 2 in

(
n−a1
a2

)
ways,
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Figure 1.1: Six lattice paths

etc., yielding

(
n

a1, a2, . . . , am

)
=

(
n

a1

)(
n− a1

a2

)
· · ·
(
n− a1 − · · · − am−1

am

)
(1.24)

=
n!

a1! a2! · · ·am!
.

Equation (1.24) is often a useful device for reducing problems on multinomial coefficients to
binomial coefficients. We leave to the reader the (easy) multinomial analogue (known as the
multinomial theorem) of equation (1.18), namely,

(x1 + x2 + · · ·+ xm)n =
∑

a1+···+am=n

(
n

a1, a2, . . . , am

)
xa11 · · ·xam

m ,

where the sum ranges over all (a1, . . . , am) ∈ Nm satisfying a1 + · · · + am = n. Note that(
n

1,1,...,1

)
= n!, the number of permutations of an n-element set.

Binomials and multinomial coefficients have an important geometric interpretation in terms
of lattice paths. Let S be a subset of Zd. More generally, we could replace Zd by any lattice
(discrete subgroup of full rank) in Rd, but for simplicity we consider only Zd. A lattice path L
in Zd of length k with steps in S is a sequence v0, v1, . . . , vk ∈ Zd such that each consecutive
difference vi− vi−1 lies in S. We say that L starts at v0 and ends at vk, or more simply that
L goes from v0 to vk. Figure 1.1 shows the six lattice paths in Z2 from (0, 0) to (2, 2) with
steps (1, 0) and (0, 1).

1.2.1 Proposition. Let v = (a1, . . . , ad) ∈ Nd, and let ei denote the ith unit coordinate
vector in Zd. The number of lattice paths in Zd from the origin (0, 0, . . . , 0) to v with steps
e1, . . . , ed is given by the multinomial coefficient

(
a1+···+ad

a1,...,ad

)
.

Proof. Let v0, v1, . . . , vk be a lattice path being counted. Then the sequence v1 − v0, v2 −
v1, . . . , vk − vk−1 is simply a sequence consisting of ai ei’s in some order. The proof follows
from equation (1.22).

Proposition 1.2.1 is the most basic result in the vast subject of lattice path enumeration.
Further results in this area will appear throughout this book.
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