
1.3 Cycles and Inversions

Permutations of sets and multisets are among the richest objects in enumerative combina-
torics. A basic reason for this fact is the wide variety of ways to represent a permutation
combinatorially. We have already seen that we can represent a set permutation either as a
word or a function. In fact, for any set S the function w : [n]→ S given by w(i) = wi corre-
sponds to the word w1w2 · · ·wn. Several additional representations will arise in Section 1.5.
Many of the basic results derived here will play an important role in later analysis of more
complicated objects related to permutations.

A second reason for the richness of the theory of permutations is the wide variety of in-
teresting “statistics” of permutations. In the broadest sense, a statistic on some class C of
combinatorial objects is just a function f : C → S, where S is any set (often taken to be
N). We want f(x) to capture some combinatorially interesting feature of x. For instance, if
x is a (finite) set, then f(x) could be its number of elements. We can think of f as refining
the enumeration of objects in C. For instance, if C consists of all subsets of an n-set S and
f(x) = #x, then f refines the number 2n of subsets of S into a sum 2n =

∑
k

(
n
k

)
, where(

n
k

)
is the number of subsets of S with k elements. In this section and the next two we will

discuss a number of different statistics on permutations.

Cycle Structure

If we regard a set permutation w as a bijection w : S → S, then it is natural to con-
sider for each x ∈ S the sequence x, w(x), w2(x), . . . . Eventually (since w is a bijection
and S is assumed finite) we must return to x. Thus for some unique ℓ ≥ 1 we have
that wℓ(x) = x and that the elements x, w(x), . . . , wℓ−1(x) are distinct. We call the se-
quence (x, w(x), . . . , wℓ−1(x)) a cycle of w of length ℓ. The cycles (x, w(x), . . . , wℓ−1(x)) and
(wi(x), wi+1(x), . . . , wℓ−1(x), x, . . . , wi−1(x)) are considered the same. Every element of S
then appears in a unique cycle of w, and we may regard w as a disjoint union or product of
its distinct cycles C1, . . . , Ck, written w = C1 · · ·Ck. For instance, if w : [7]→ [7] is defined
by w(1) = 4, w(2) = 2, w(3) = 7, w(4) = 1, w(5) = 3, w(6) = 6, w(7) = 5 (or w = 4271365
as a word), then w = (14)(2)(375)(6). Of course this representation of w in disjoint cycle
notation is not unique; we also have for instance w = (753)(14)(6)(2).

A geometric or graphical representation of a permutation w is often useful. A finite directed
graph or digraph D is a triple (V,E, φ), where V = {x1, . . . , xn} is a set of vertices, E is a
finite set of (directed) edges or arcs, and φ is a map from E to V × V . If φ is injective then
we call D a simple digraph, and we can think of E as a subset of V ×V . If e is an edge with
φ(e) = (x, y), then we represent e as an arrow directed from x to y. If w is permutation of
the set S, then define the digraph Dw of w to be the directed graph with vertex set S and
edge set {(x, y) : w(x) = y}. In other words, for every vertex x there is an edge from x to
w(x). Digraphs of permutations are characterized by the property that every vertex has one
edge pointing out and one pointing in. The disjoint cycle decomposition of a permutation
of a finite set guarantees that Dw will be a disjoint union of directed cycles. For instance,
Figure 1.2 shows the digraph of the permutation w = (14)(2)(375)(6).

29



4

1

5

2

7

3

6

Figure 1.2: The digraph of the permutation (14)(2)(375)(6)

We noted above that the disjoint cycle notation of a permutation is not unique. We can
define a standard representation by requiring that (a) each cycle is written with its largest
element first, and (b) the cycles are written in increasing order of their largest element. Thus
the standard form of the permutation w = (14)(2)(375)(6) is (2)(41)(6)(753). Define ŵ to
be the word (or permutation) obtained from w by writing it in standard form and erasing
the parentheses. For example, with w = (2)(41)(6)(753) we have ŵ = 2416753. Now observe
that we can uniquely recover w from ŵ by inserting a left parenthesis in ŵ = a1a2 · · ·an
preceding every left-to-right maximum or record (also called outstanding element); that is,
an element ai such that ai > aj for every j < i. Then insert a right parenthesis where
appropriate; that is, before every internal left parenthesis and at the end. Thus the map
w 7→ ŵ is a bijection from Sn to itself, known as the fundamental bijection. Let us sum up
this information as a proposition.

1.3.1 Proposition. (a) The map Sn
∧→ Sn defined above is a bijection.

(b) If w ∈ Sn has k cycles, then ŵ has k left-to-right maxima.

If w ∈ SS where #S = n, then let ci = ci(w) be the number of cycles of w of length i. Note
that n =

∑
ici. Define the type of w, denoted type(w), to be the sequence (c1, . . . , cn). The

total number of cycles of w is denoted c(w), so c(w) = c1(w) + · · ·+ cn(w).

1.3.2 Proposition. The number of permutations w ∈ SS of type (c1, . . . , cn) is equal to
n!/1c1c1!2

c2c2! · · ·ncncn!.

Proof. Let w = w1w2 · · ·wn be any permutation of S. Parenthesize the word w so that
the first ci cycles have length 1, the next c2 have length 2, and so on. For instance, if
(c1, . . . , c9) = (1, 2, 0, 1, 0, 0, 0, 0, 0) and w = 427619583, then we obtain (4)(27)(61)(9583).
In general we obtain the disjoint cycle decomposition of a permutation w′ of type (c1, . . . , cn).
Hence we have defined a map Φ : SS → Sc

S , where Sc
S is the set of all u ∈ SS of type

c = (c1, . . . , cn). Given u ∈ Sc
S , we claim that there are 1c1c1!2

c2c2! · · ·ncncn! ways to write
it in disjoint cycle notation so that the cycle lengths are weakly increasing from left to right.
Namely, order the cycles of length i in ci! ways, and choose the first elements of these cycles
in ici ways. These choices are all independent, so the claim is proved. Hence for each u ∈ Sc

S

we have #Φ−1(u) = 1c1c1!2
c2c2! · · ·ncncn!, and the proof follows since #SS = n!.

Note. The proof of Proposition 1.3.2 can easily be converted into a bijective proof of the
identity

n! = 1c1c1!2
c2c2! · · ·ncncn!

(
#S

c
S

)
,

30



analogous to our bijective proof of equation (1.16).

Proposition 1.3.2 has an elegant and useful formulation in terms of generating functions.
Suppose that w ∈ Sn has type (c1, . . . , cn). Write

ttype(w) = tc11 t
c2
2 · · · tcnn ,

and define the cycle indicator or cycle index of Sn to be the polynomial

Zn = Zn(t1, . . . , tn) =
1

n!

∑

w∈Sn

ttype(w). (1.25)

(Set Z0 = 1.) For instance,

Z1 = t1

Z2 =
1

2
(t21 + t2)

Z3 =
1

6
(t31 + 3t1t2 + 2t3)

Z4 =
1

24
(t41 + 6t21t2 + 8t1t3 + 3t22 + 6t4).

1.3.3 Theorem. We have

∑

n≥0

Znx
n = exp

(
t1x+ t2

x2

2
+ t3

x3

3
+ · · ·

)
. (1.26)

Proof. We give a naive computational proof. For a more conceptual proof, see Exam-
ple 5.2.10. Let us expand the right-hand side of equation (1.26):

exp

(∑

i≥1

ti
xi

i

)
=

∏

i≥1

exp

(
ti
xi

i

)

=
∏

i≥1

∑

j≥0

tji
xij

ijj!
. (1.27)

Hence the coefficient of tc11 · · · tcnn xn is equal to 0 unless
∑
ici = n, in which case it is equal

to
1

1c1c1! 2c2c2! · · ·
=

1

n!

n!

1c1c1! 2c2c2! · · ·
.

Comparing with Proposition 1.3.2 completes the proof.

Let us give two simple examples of the use of Theorem 1.3.3. For some additional examples,
see Exercises 5.10 and 5.11. A more general theory of cycle indicators based on symmetric
functions is given in Section 7.24. Write F (t; x) = F (t1, t2, . . . ; x) for the right-hand side of
equation (1.26).
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1.3.4 Example. Let e6(n) be the number of permutations w ∈ Sn satisfying w6 = 1. A
permutation w satisfies w6 = 1 if and only if all its cycles have length 1,2,3 or 6. Hence

e6(n) = n!Zn(ti = 1 if i|6, ti = 0 otherwise).

There follows
∑

n≥0

e6(n)
xn

n!
= F (ti = 1 if i|6, ti = 0 otherwise)

= exp

(
x+

x2

2
+
x3

3
+
x6

6

)
.

For the obvious generalization to permutations w satisfying wr = 1, see equation (5.31).

1.3.5 Example. Let Ek(n) denote the expected number of k-cycles in a permutation w ∈
Sn. It is understood that the expectation is taken with respect to the uniform distribution
on Sn, so

Ek(n) =
1

n!

∑

w∈Sn

ck(w),

where ck(w) denotes the number of k-cycles in w. Now note that from the definition (1.25)
of Zn we have

Ek(n) =
∂

∂tk
Zn(t1, . . . , tn)|ti=1.

Hence

∑

n≥0

Ek(n)xn =
∂

∂tk
exp

(
t1x+ t2

x2

2
+ t3

x3

3
+ · · ·

)∣∣∣∣
ti=1

=
xk

k
exp

(
x+

x2

2
+
x3

3
+ · · ·

)

=
xk

k
exp log(1− x)−1

=
xk

k

1

1− x
=

xk

k

∑

n≥0

xn.

It follows that Ek(n) = 1/k for n ≥ k. Can the reader think of a simple explanation
(Exercise 1.120)?

Now define c(n, k) to be the number of permutations w ∈ Sn with exactly k cycles. The
number s(n, k) := (−1)n−kc(n, k) is known as a Stirling number of the first kind, and c(n, k)
is called a signless Stirling number of the first kind.

1.3.6 Lemma. The numbers c(n, k) satisfy the recurrence

c(n, k) = (n− 1)c(n− 1, k) + c(n− 1, k − 1), n, k ≥ 1,

with the initial conditions c(n, k) = 0 if n < k or k = 0, except c(0, 0) = 1.
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Proof. Choose a permutation w ∈ Sn−1 with k cycles. We can insert the symbol n after
any of the numbers 1, 2, . . . , n − 1 in the disjoint cycle decomposition of w in n − 1 ways,
yielding the disjoint cycle decomposition of a permutation w′ ∈ Sn with k cycles for which
n appears in a cycle of length at least 2. Hence there are (n − 1)c(n − 1, k) permutations
w′ ∈ Sn with k cycles for which w′(n) 6= n.

On the other hand, if we choose a permutation w ∈ Sn−1 with k − 1 cycles we can extend
it to a permutation w′ ∈ Sn with k cycles satisfying w′(n) = n by defining

w′(i) =

{
w(i), if i ∈ [n− 1]
n, if i = n.

Thus there are c(n− 1, k− 1) permutations w′ ∈ Sn with k cycles for which w′(n) = n, and
the proof follows.

Most of the elementary properties of the numbers c(n, k) can be established using Lemma 1.3.6
together with mathematical induction. However, combinatorial proofs are to be preferred
whenever possible. An illuminating illustration of the various techniques available to prove
elementary combinatorial identities is provided by the next result.

1.3.7 Proposition. Let t be an indeterminate and fix n ≥ 0. Then

n∑

k=0

c(n, k)tk = t(t+ 1)(t+ 2) · · · (t+ n− 1). (1.28)

First proof. This proof may be regarded as “semi-combinatorial” since it is based directly
on Lemma 1.3.6, which had a combinatorial proof. Let

Fn(t) = t(t+ 1) · · · (t+ n− 1) =

n∑

k=0

b(n, k)tk.

Clearly b(n, k) = 0 if n = 0 or k = 0, except b(0, 0) = 1 (an empty product is equal to 1).
Moreover, since

Fn(t) = (t+ n− 1)Fn−1(t)

=
n∑

k=1

b(n− 1, k − 1)tk + (n− 1)
n−1∑

k=0

b(n− 1, k)tk,

there follows b(n, k) = (n− 1)b(n − 1, k) + b(n − 1, k − 1). Hence b(n, k) satisfies the same
recurrence and initial conditions as c(n, k), so they agree.

Second proof. Our next proof is a straightforward argument using generating functions. In
terms of the cycle indicator Zn we have

n∑

k=0

c(n, k)tk = n!Zn(t, t, t, . . . ).
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Hence substituting ti = t in equation (1.26) gives

∑

n≥0

n∑

k=0

c(n, k)tk
xn

n!
= exp t(x+

x2

2
+
x3

3
+ · · · )

= exp t(log(1− x)−1)

= (1− x)−t

=
∑

n≥0

(−1)n
(−t
n

)
xn

=
∑

n≥0

t(t+ 1) . . . (t+ n− 1)
xn

n!
,

and the proof follows from taking coefficient of xn/n!.

Third proof. The coefficient of tk in Fn(t) is

∑

1≤a1<a2<···<an−k≤n−1

a1a2 · · ·an−k, (1.29)

where the sum is over all
(
n−1
n−k
)

(n− k)-subsets {a1, . . . , an−k} of [n− 1]. (Though irrelevant
here, it is interesting to note that this sum is just the (n−k)th elementary symmetric function
of 1, 2, . . . , n − 1.) Clearly (1.29) counts the number of pairs (S, f), where S ∈

(
[n−1]
n−k
)

and
f : S → [n− 1] satisfies f(i) ≤ i. Thus we seek a bijection φ : Ω→ Sn,k between the set Ω
of all such pairs (S, f), and the set Sn,k of w ∈ Sn with k cycles.

Given (S, f) ∈ Ω where S = {a1, . . . , an−k}< ⊆ [n−1], define T = {j ∈ [n] : n−j 6∈ S}. Let
the elements of [n]− T be b1 > b2 > · · · > bn−k. Define w = φ(S, f) to be that permutation
that when written in standard form satisfies: (i) the first (=greatest) elements of the cycles
of w are the elements of T , and (ii) for i ∈ [n− k] the number of elements of w preceding bi
and larger than bi is f(ai). We leave it to the reader to verify that this construction yields
the desired bijection.

1.3.8 Example. Suppose that in the above proof n = 9, k = 4, S = {1, 3, 4, 6, 8}, f(1) = 1,
f(3) = 2, f(4) = 1, f(6) = 3, f(8) = 6. Then T = {2, 4, 7, 9}, [9] − T = {1, 3, 5, 6, 8}, and
w = (2)(4)(753)(9168).

Fourth proof of Proposition 1.3.7. There are two basic ways of giving a combinatorial proof
that two polynomials are equal: (i) showing that their coefficients are equal, and (ii) showing
that they agree for sufficiently many values of their variable(s). We have already established
Proposition 1.3.7 by the first technique; here we apply the second. If two polynomials in
a single variable t (over the complex numbers, say) agree for all t ∈ P, then they agree as
polynomials. Thus it suffices to establish (1.28) for all t ∈ P.

Let t ∈ P, and let C(w) denote the set of cycles of w ∈ Sn. The left-hand side of (1.28)
counts all pairs (w, f), where w ∈ Sn and f : C(w)→ [t]. The right-hand side counts integer
sequences (a1, a2, . . . , an) where 0 ≤ ai ≤ t+ n− i− 1. (There are historical reasons for this
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restriction of ai, rather than, say, 1 ≤ ai ≤ t+ i− 1.) Given such a sequence (a1, a2, . . . , an),
the following simple algorithm may be used to define (w, f). First write down the number n
and regard it as starting a cycle C1 of w. Let f(C1) = an+1. Assuming n, n−1, . . . , n− i+1
have been inserted into the disjoint cycle notation for w, we now have two possibilities:

i. 0 ≤ an−i ≤ t− 1. Then start a new cycle Cj with the element n− i to the left of the
previously inserted elements, and set f(Cj) = an−i + 1.

ii. an−i = t+ k where 0 ≤ k ≤ i− 1. Then insert n− i into an old cycle so that it is not
the leftmost element of any cycle, and so that it appears to the right of k + 1 of the
numbers previously inserted.

This procedure establishes the desired bijection.

1.3.9 Example. Suppose n = 9, t = 4, and (a1, . . . , a9) = (4, 8, 5, 0, 7, 5, 2, 4, 1). Then w is
built up as follows:

(9)
(98)
(7)(98)
(7)(968)
(7)(9685)
(4)(7)(9685)
(4)(73)(9685)
(4)(73)(96285)
(41)(73)(96285).

Moreover, f(96285) = 2, f(73) = 3, f(41) = 1.

Note that if we set t = 1 in the preceding proof, we obtain a combinatorial proof of the
following result.

1.3.10 Proposition. Let n, k ∈ P. The number of integer sequences (a1, . . . , an) such that
0 ≤ ai ≤ n− i and exactly k values of ai equal 0 is c(n, k)

Note that because of Proposition 1.3.1 we obtain “for free” the enumeration of permutations
by left-to-right maxima.

1.3.11 Corollary. The number of w ∈ Sn with k left-to-right maxima is c(n, k).

Corollary 1.3.11 illustrates one benefit of having different ways of representing the same
object (here a permutation)—different enumerative problems involving the object turn out
to be equivalent.

Inversions

The fourth proof of Proposition 1.3.7 (in the case t = 1) associated a permutation w ∈ Sn

with an integer sequence (a1, . . . , an), 0 ≤ ai ≤ n − i. There is a different method for
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accomplishing this which is perhaps more natural. Given such a vector (a1, . . . , an), assume
that n, n− 1, . . . , n− i+ 1 have been inserted into w, expressed this time as a word (rather
than a product of cycles). Then insert n − i so that it has an−i elements to its left. For
example, if (a1, . . . , a9) = (1, 5, 2, 0, 4, 2, 0, 1, 0), then w is built up as follows:

9
98
798
7968
79685
479685
4739685
47396285
417396285.

Clearly ai is the number of entries j of w to the left of i satisfying j > i. A pair (wi, wj) is
called an inversion of the permutation w = w1w2 · · ·wn if i < j and wi > wj. The above
sequence I(w) = (a1, . . . , an) is called the inversion table of w. The above algorithm for
constructing w from its inversion table I(w) establishes the following result.

1.3.12 Proposition. Let

Tn = {(a1, . . . , an) : 0 ≤ ai ≤ n− i} = [0, n− 1]× [0, n− 2]× · · · × [0, 0].

The map I : Sn → Tn that sends each permutation to its inversion table is a bijection.

Therefore, the inversion table I(w) is yet another way to represent a permutation w. Let us
also mention that the code of a permutation w is defined by code(w) = I(w−1). Equivalently,
if w = w1 · · ·wn and code(w) = (c1, . . . , cn), then ci is equal to the number of elements wj
to the right of wi (i.e., i < j) such that wi > wj . The question of whether to use I(w) or
code(w) depends on the problem at hand and is clearly only a matter of convenience. Often
it makes no difference which is used, such as in obtaining the next corollary.

1.3.13 Corollary. Let inv(w) denote the number of inversions of the permutation w ∈ Sn.
Then ∑

w∈Sn

qinv(w) = (1 + q)(1 + q + q2) · · · (1 + q + q2 + · · ·+ qn−1). (1.30)

Proof. If I(w) = (a1, . . . , an) then inv(w) = a1 + · · ·+ an. hence

∑

w∈Sn

qinv(w) =

n−1∑

a1=0

n−2∑

a2=0

· · ·
0∑

an=0

qa1+a2+···+an

=

(
n−1∑

a1=0

qa1

)(
n−2∑

a2=0

qa2

)
· · ·
(

0∑

an=0

qan

)
,

as desired.
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The polynomial (1+ q)(1+ q+ q2) · · · (1+ q+ · · ·+ qn−1) is called “the q-analogue of n!” and
is denoted (n)!. Moreover, we denote the polynomial 1 + q + · · ·+ qn−1 = (1− qn)/(1− q)
by (n) and call it “the q-analogue of n,” so that

(n)! = (1)(2) · · · (n).

In general, a q-analogue of a mathematical object is an object depending on the variable
q that “reduces to” (an admittedly vague term) the original object when we set q = 1.
To be a “satisfactory” q-analogue more is required, but there is no precise definition of
what is meant by “satisfactory.” Certainly one desirable property is that the original object
concerns finite sets, while the q-analogue can be interpreted in terms of subspaces of finite-
dimensional vector spaces over the finite field Fq. For instance, n! is the number of sequences
∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = [n] of subsets of [n]. (The symbol ⊂ denotes strict inclusion,
so #Si = i.) Similarly if q is a prime power then (n)! is the number of sequences 0 =
V0 ⊂ V1 ⊂ · · · ⊂ Vn = Fnq of subspaces of the n-dimensional vector space Fnq over Fq (so
dimVi = i). For this reason (n)! is regarded as a satisfactory q-analogue of n!. We can also
regard an i-dimensional vector space over Fq as the q-analogue of an i-element set. Many
more instances of q-analogues will appear throughout this book, especially in Section 1.10.
The theory of binomial posets developed in Section 3.18 gives a partial explanation for the
existence of certain classes of q-analogues including (n)!.

We conclude this section with a simple but important property of the statistic inv.

1.3.14 Proposition. For any w = w1w2 · · ·wn ∈ Sn we have inv(w) = inv(w−1).

Proof. The pair (i, j) is an inversion of w if and only if (wj, wi) is an inversion of w−1.
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