
A Note about the Exercises

Each exercise is given a difficulty rating, as follows.

1. routine, straightforward

2. somewhat difficult or tricky

3. difficult

4. horrendously difficult

5. unsolved

Further gradations are indicated by + and −. Thus [1–] denotes an utterly trivial problem,
and [5–] denotes an unsolved problem that has received little attention and may not be
too difficult. A rating of [2+] denotes about the hardest problem that could be reasonably
assigned to a class of graduate students. A few students may be capable of solving a [3–]
problem, while almost none could solve a [3] in a reasonable period of time. Of course the
ratings are subjective, and there is always the possibility of an overlooked simple proof that
would lower the rating. Some problems (seemingly) require results or techniques from other
branches of mathematics that are not usually associated with combinatorics. Here the rating
is less meaningful—it is based on an assessment of how likely the reader is to discover for
herself or himself the relevance of these outside techniques and results. An asterisk after the
difficulty rating indicates that no solution is provided.

EXERCISES FOR CHAPTER 1

1. [1–] Let S and T be disjoint one-element sets. Find the number of elements of their
union S ∪ T .

2. [1+] We continue with a dozen simple numerical problems. Find as simple a solution
as possible.

(a) How many subsets of the set [10] = {1, 2, . . . , 10} contain at least one odd integer?

(b) In how many ways can seven people be seated in a circle if two arrangements are
considered the same whenever each person has the same neighbors (not necessarily
on the same side)?

(c) How many permutations w : [6]→ [6] satisfy w(1) 6= 2?

(d) How many permutations of [6] have exactly two cycles (i.e., find c(6, 2))?

(e) How many partitions of [6] have exactly three blocks (i.e., find S(6, 3))?

(f) There are four men and six women. Each man marries one of the women. In how
many ways can this be done?
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(g) Ten people split up into five groups of two each. In how many ways can this be
done?

(h) How many compositions of 19 use only the parts 2 and 3?

(i) In how many different ways can the letters of the word MISSISSIPPI be arranged
if the four S’s cannot appear consecutively?

(j) How many sequences (a1, a2, . . . , a12) are there consisting of four 0’s and eight 1’s,
if no two consecutive terms are both 0’s?

(k) A box is filled with three blue socks, three red socks, and four chartreuse socks.
Eight socks are pulled out, one at a time. In how many ways can this be done?
(Socks of the same color are indistinguishable.)

(l) How many functions f : [5] → [5] are at most two-to-one, i.e., #f−1(n) ≤ 2 for
all n ∈ [5]?

3. Give combinatorial proofs of the following identities, where x, y, n, a, b are nonnegative
integers.

(a) [2–]
n∑

k=0

(
x+ k

k

)
=

(
x+ n+ 1

n

)

(b) [1+]
n∑

k=0

k

(
n

k

)
= n2n−1

(c) [3]
n∑

k=0

(
2k

k

)(
2(n− k)
n− k

)
= 4n

(d) [3–]
m∑

k=0

(
x+ y + k

k

)(
y

a− k

)(
x

b− k

)
=

(
x+ a

b

)(
y + b

a

)
, where m = min(a, b)

(e) [1] 2

(
2n− 1

n

)
=

(
2n

n

)

(f) [2–]
n∑

k=0

(−1)k
(
n

k

)
= 0, n ≥ 1

(g) [2+]
n∑

k=0

(
n

k

)2

xk =
n∑

j=0

(
n

j

)(
2n− j
n

)
(x− 1)j

(h) [3–]
∑

i+j+k=n

(
i+ j

i

)(
j + k

j

)(
k + i

k

)
=

n∑

r=0

(
2r

r

)
, where i, j, k ∈ N

4. [2]* Fix j, k ∈ Z. Show that

∑

n≥0

(2n− j − k)!xn
(n− j)!(n− k)!(n− j − k)!n!

=

[∑

n≥0

xn

n!(n− j)!

][∑

n≥0

xn

n!(n− k)!

]
.

Any term with (−r)! in the denominator, where r > 0, is set equal to 0.
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5. [2]* Show that

∑

n1,...,nk≥0

min(n1, . . . , nk)x
n1
1 · · ·xnk

k =
x1 · · ·xk

(1− x1) · · · (1− xk)(1− x1x2 · · ·xk)
.

6. [3–]* For n ∈ Z let

Jn(2x) =
∑

k∈Z

(−1)kxn+2k

k!(n + k)!
,

where we set 1/j! = 0 for j < 0. Show that

ex =
∑

n≥0

LnJn(2x),

where L0 = 1, L1 = 1, L2 = 3, Ln+1 = Ln + Ln−1 for n ≥ 2. (The numbers Ln for
n ≥ 1 are Lucas numbers.)

7. [2]* Let

ex+
x2

2 =
∑

n≥0

f(n)
xn

n!
.

Find a simple expression for
∑n

i=0(−1)n−i
(
n
i

)
f(i). (See equation (1.13).)

8. (a) [2–] Show that
1√

1− 4x
=
∑

n≥0

(
2n

n

)
xn.

(b) [2–] Find
∑

n≥0

(
2n−1
n

)
xn.

9. Let f(m,n) be the number of paths from (0, 0) to (m,n) ∈ N× N, where each step is
of the form (1, 0), (0, 1), or (1, 1).

(a) [1+]* Show that
∑

m≥0

∑
n≥0 f(m,n)xmyn = (1− x− y − xy)−1.

(b) [3–] Find a simple explicit expression for
∑

n≥0 f(n, n)xn.

10. [2+] Let f(n, r, s) denote the number of subsets S of [2n] consisting of r odd and s
even integers, with no two elements of S differing by 1. Give a bijective proof that
f(n, r, s) =

(
n−r
s

)(
n−s
r

)
.

11. (a) [2+] Let m,n ∈ N. Interpret the integral

B(m+ 1, n+ 1) =

∫ 1

0

um(1− u)n du,

as a probability and evaluate it by combinatorial reasoning.
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(b) [3+] Let n ∈ P and r, s, t ∈ N. Let x, yk, zk and aij be indeterminates, with
1 ≤ k ≤ n and 1 ≤ i < j ≤ n. Let M be the multiset with n occurrences of x, r
occurrences of each yk, s occurrences of each zk, and 2t occurrences of each aij .
Let f(n, r, s, t) be the number of permutations w of M such that (i) all yk’s appear
before the kth x (reading the x’s from left-to-right in w), (ii) all zk’s appear after
the kth x, and (iii) all aij ’s appear between the ith x and jth x. Show that

f(n, r, s, t) =
[(r + s+ 1)n+ tn(n− 1)]!

n!r!ns!nt!n(2t)!(
n
2)

·
n∏

j=1

(r + (j − 1)t)!(s+ (j − 1)t)!(jt)!

(r + s+ 1 + (n+ j − 2)t)!
. (1.119)

(c) [3–] Consider the following chess position.

R. Stanley

Suomen Tehtäväniekat, 2005j Z Z ZZpZ Z ZpOpZPZ ZZ o ZPZspZpZpZZ O o ZO Z Z ZZ Z J A
Black is to make 14 consecutive moves, after which White checkmates Black in
one move. Black may not move into check, and may not check White (except
possibly on his last move). Black and White are cooperating to achieve the aim
of checkmate. (In chess problem parlance, this problem is called a serieshelpmate
in 14.) How many different solutions are there?

12. [2+]* Choose n points on the circumference of a circle in “general position.” Draw
all
(
n
2

)
chords connecting two of the points. (“General position” means that no three

of these chords intersect in a point.) Into how many regions will the interior of the
circle be divided? Try to give an elegant proof avoiding induction, finite differences,
generating functions, summations, etc.

13. [2] Let p be prime and a ∈ P. Show combinatorially that ap − a is divisible by p. (A
combinatorial proof would consist of exhibiting a set S with ap − a elements and a
partition of S into pairwise disjoint subsets, each with p elements.)
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14. (a) [2+] Let p be a prime, and let n =
∑
aip

i and m =
∑
bip

i be the p-ary expansions
of the positive integers m and n. Show that

(
n

m

)
≡
(
a0

b0

)(
a1

b1

)
· · · (mod p).

(b) [3–] Use (a) to determine when
(
n
m

)
is odd. For what n is

(
n
m

)
odd for all 0 ≤ m ≤

n? In general, how many coefficients of the polynomial (1 + x)n are odd?

(c) [2+] It follows from (a), and is easy to show directly, that
(
pa
pb

)
≡
(
a
b

)
(mod p).

Give a combinatorial proof that in fact
(
pa
pb

)
≡
(
a
b

)
(mod p2).

(d) [3–] If p ≥ 5, then show in fact
(
pa

pb

)
≡
(
a

b

)
(mod p3).

Is there a combinatorial proof?

(e) [3–] Give a simple description of the largest power of p dividing
(
n
m

)
.

15. (a) [2] How many coefficients of the polynomial (1 + x+ x2)n are not divisible by 3?

(b) [3–] How many coefficients of the polynomial (1 + x+ x2)n are odd?

(c) [2+] How many coefficients of the polynomial
∏

1≤i<j≤n(xi + xj) are odd?

16. [3–]*

(a) Let p be a prime, and let A be the matrix A =
[(
j+k
k

)]p−1

j,k=0
, taken over the field

Fp. Show that A3 = I, the identity matrix. (Note that A vanishes below the main
antidiagonal, i.e., Ajk = 0 if j + k ≥ p.)

(b) How many eigenvalues of A are equal to 1?

17. (a) [1+]* Let m,n ∈ N. Prove the identity
((

n
m

))
=
((
m+1
n−1

))
.

(b) [2–] Give a combinatorial proof.

18. [2+]* Find a simple description of all n ∈ P with the following property: there exists
k ∈ [n] such that

(
n
k−1

)
,
(
n
k

)
,
(
n
k+1

)
are in arithmetic progression.

19. (a) [2+] Let a1, . . . , an ∈ N. Show that when we expand the product

n∏

i,j=1
i6=j

(
1− xi

xj

)ai

as a Laurent polynomial in x1, . . . , xn (i.e., negative exponents allowed), then the
constant term is the multinomial coefficient

(
a1+···+an

a1,...,an

)
.

Hint: First prove the identity

1 =

n∑

i=1

∏

j 6=i

(
1− xi

xj

)−1

. (1.120)
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(b) [2–] Put n = 3 to deduce the identity

a∑

k=−a
(−1)k

(
a+ b

a + k

)(
b+ c

b+ k

)(
c+ a

c+ k

)
=

(
a+ b+ c

a, b, c

)
.

(Set
(
m
i

)
= 0 if i < 0.) Note that if we specialize a = b = c, then we obtain

2a∑

k=0

(−1)k
(

2a

k

)3

=

(
3a

a, a, a

)
.

(c) [3+] Let q be an additional indeterminate. Show that when we expand the product

∏

1≤i<j≤k

(
1− q xi

xj

)(
1− q2 xi

xj

)
· · ·
(

1− qai
xi
xj

)

·
(

1− xj
xi

)(
1− qxj

xi

)
· · ·
(

1− qaj−1xj
xi

)
(1.121)

as a Laurent polynomial in x1, . . . , xn (whose coefficients are now polynomials in
q), then the constant term is the q-multinomial coefficient

(
a1+···+an

a1,...,an

)
.

(d) [3+] Let k ∈ P. When the product

∏

1≤i<j≤n

[(
1− xi

xj

)(
1− xj

xi

)
(1− xixj)

(
1− 1

xixj

)]k

is expanded as above, show that the constant term is

(
k

k

)(
3k

k

)(
5k

k

)
· · ·
(

(2n− 3)k

k

)
·
(

(n− 1)k

k

)
.

(e) [3–] Let f(a1, a2, . . . , an) denote the constant term of the Laurent polynomial

n∏

i=1

(
q−ai + q−ai+1 + · · ·+ qai

)
,

where each ai ∈ N. Show that
∑

a1,...,an≥0

f(a1, . . . , an)x
a1
1 · · ·xan

n

= (1 + x1) · · · (1 + xn)
n∑

i=1

xn−1
i

(1− x2
i )
∏

j 6=i(xi − xj)(1− xixj)
.

20. [2]* How many m×n matrices of 0’s and 1’s are there, such that every row and column
contains an even number of 1’s? An odd number of 1’s?
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21. [2]* Fix n ∈ P. In how many ways (as a function of n) can one choose a composition α
of n, and then choose a composition of each part of α? (Give an elegant combinatorial
proof.)

22. (a) [2] Find the number of compositions of n > 1 with an even number of even parts.
Naturally a combinatorial proof is preferred.

(b) [2+] Let e(n), o(n), and k(n) denote, respectively, the number of partitions of n
with an even number of even parts, with an odd number of even parts, and that
are self-conjugate. Show that e(n)− o(n) = k(n). Is there a simple combinatorial
proof?

23. [2] Give a simple “balls into boxes” proof that the total number of parts of all compo-
sitions of n is equal to (n+ 1)2n−2. (The simplest argument expresses the answer as a
sum of two terms.)

24. [2+] Let 1 ≤ k < n. Give a combinatorial proof that among all 2n−1 compositions of
n, the part k occurs a total of (n − k + 3)2n−k−2 times. For instance, if n = 4 and
k = 2, then the part 2 appears once in 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, and twice in
2 + 2, for a total of five times.

25. [2+] Let n− r = 2k. Show that the number f(n, r, s) of compositions of n with r odd
parts and s even parts is given by

(
r+s
r

)(
r+k−1
r+s−1

)
. Give a generating function proof and

a bijective proof.

26. [2]* Let c̄(m,n) denote the number of compositions of n with largest part at most m.
Show that ∑

n≥0

c̄(m,n)xn =
1− x

1− 2x+ xm+1
.

27. [2+] Find a simple explicit formula for the number of compositions of 2n with largest
part exactly n.

28. [2]* Let κ(n, j, k) be the number of weak compositions of n into k parts, each part less
than j. Give a generating function proof that

κ(n, j, k) =
∑

r+sj=n

(−1)s
(
k + r − 1

r

)(
k

s

)
,

where the sum is over all pairs (r, s) ∈ N2 satisfying r + sj = n.

29. [2]* Fix k, n ∈ P. Show that

∑
a1 · · ·ak =

(
n+ k − 1

2k − 1

)
,

where the sum ranges over all compositions (a1, . . . , ak) of n into k parts.

30. [2] Fix 1 ≤ k ≤ n. How many integer sequences 1 ≤ a1 < a2 < · · · < ak ≤ n satisfy
ai ≡ i (mod 2) for all i?
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31. [2+]

(a) Let #N = n, #X = x. Find a simple explicit expression for the number of ways
of choosing a function f : N → X and then linearly ordering each block of the
coimage of f . (The elements of N and X are assumed to be distinguishable.)

(b) How many ways as in (a) are there if f must be surjective? (Give a simple explicit
answer.)

(c) How many ways as in (a) are there if the elements of X are indistinguishable?
(Express your answer as a finite sum.)

32. [2] Fix positive integers n and k. Let #S = n. Find the number of k-tuples (T1, T2, . . . , Tk)
of subsets Ti of S subject to each of the following conditions separately, i.e., the three
parts are independent problems (all with the same general method of solution).

(a) T1 ⊆ T2 ⊆ · · · ⊆ Tk

(b) The Ti’s are pairwise disjoint.

(c) T1 ∪ T2 ∪ · · · ∪ Tk = S

33. (a) [2–]* Let k, n ≥ 1. Find the number of sequences ∅ = S0, S1, . . . , Sk of subsets of
[n] if for all 1 ≤ i ≤ k we have either (i) Si−1 ⊂ Si and |Si − Si−1| = 1, or (ii)
Si ⊂ Si−1 and |Si−1 − Si| = 1.

(b) [2+]* Suppose that we add the additional condition that Sk = ∅. Show that now
the number fk(n) of sequences is given by

fk(n) =
1

2n

n∑

i=0

(
n

i

)
(n− 2i)k.

Note that fk(n) = 0 if k is odd.

34. [2] Fix n, j, k ∈ P. How many integer sequences are there of the form 1 ≤ a1 < a2 <
· · · < ak ≤ n, where ai+1 − ai ≥ j for all 1 ≤ i ≤ k − 1?

35. The Fibonacci numbers are defined by F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 if n ≥ 3.
Express the following numbers in terms of the Fibonacci numbers.

(a) [2–] The number of subsets S of the set [n] = {1, 2, . . . , n} such that S contains
no two consecutive integers.

(b) [2] The number of compositions of n into parts greater than 1.

(c) [2–] The number of compositions of n into parts equal to 1 or 2.

(d) [2] The number of compositions of n into odd parts.

(e) [2] The number of sequences (ε1, ε2, . . . , εn) of 0’s and 1’s such that ε1 ≤ ε2 ≥
ε3 ≤ ε4 ≥ ε5 ≤ · · · .

(f) [2+]
∑
a1a2 · · ·ak, where the sum is over all 2n−1 compositions a1+a2 + · · ·+ak =

n.
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(g) [2+]
∑

(2a1−1 − 1) · · · (2ak−1 − 1), summed over the same set as in (f).

(h) [2+]
∑

2#{i : ai=1}, summed over the same set as (f).

(i) [2+]
∑

(−1)k−1(5a1−1 + 1) · · · (5ak−1 + 1), summed over the same set as (f).

(j) [2+]* The number of sequences (δ1, δ2, . . . , δn) of 0’s, 1’s, and 2’s such that 0 is
never immediately followed by 1.

(k) [2+] The number of distinct terms of the polynomial

Pn =

n∏

j=1

(1 + xj + xj+1).

For instance, setting x1 = a, x2 = b, x3 = c, we have P2 = 1 + a + 2b+ c + ab +
b2 + ac+ bc, which has eight distinct terms.

36. [2] Fix k, n ∈ P. Find a simple expression involving Fibonacci numbers for the number
of sequences (T1, T2, . . . , Tk) of subsets Ti of [n] such that

T1 ⊆ T2 ⊇ T3 ⊆ T4 ⊇ · · · .

37. [2] Show that

Fn+1 =
n∑

k=0

(
n− k
k

)
. (1.122)

38. [2]* Show that the number of permutations w ∈ Sn fixed by the fundamental trans-

formation Sn
∧→ Sn of Proposition 1.3.1 (i.e., w = ŵ) is the Fibonacci number Fn+1.

39. [2+] Show that the number of ordered pairs (S, T ) of subsets of [n] satisfying s > #T
for all s ∈ S and t > #S for all t ∈ T is equal to the Fibonacci number F2n+2.

40. [2]* Suppose that n points are arranged on a circle. Show that the number of subsets
of these points containing no two that are consecutive is the Lucas number Ln. This
result shows that the Lucas number Ln may be regarded as a “circular analogue”
of the Fibonacci number Fn+2 (via Exercise 1.35(a)). For further explication, see
Example 4.7.16.

41. (a) [2] Let f(n) be the number of ways to choose a subset S ⊆ [n] and a permutation
w ∈ Sn such that w(i) 6∈ S whenever i ∈ S. Show that f(n) = Fn+1n!.

(b) [2+] Suppose that in (a) we require w to be an n-cycle. Show that the number of
ways is now g(n) = Ln(n− 1)!, where Ln is a Lucas number.

42. [3] Let

F (x) =
∏

n≥2

(1− xFn) = (1− x)(1− x2)(1− x3)(1− x5)(1− x8) · · ·

= 1− x− x2 + x4 + x7 − x8 + x11 − x12 − x13 + x14 + x18 + · · · .

Show that every coefficient of F (x) is equal to −1, 0 or 1.
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43. [2–] Using only the combinatorial definitions of the Stirling numbers S(n, k) and c(n, k),
give formulas for S(n, 1), S(n, 2), S(n, n), S(n, n− 1), S(n, n− 2) and c(n, 1), c(n, 2),
c(n, n), c(n, n − 1), c(n, n − 2). For the case c(n, 2), express your answer in terms of
the harmonic number Hm = 1 + 1

2
+ 1

3
+ · · ·+ 1

m
for suitable m.

44. (a) [2]* Show that the total number of cycles of all even permutations of [n] and the
total number of cycles of all odd permutations of [n] differ by (−1)n(n− 2)!. Use
generating functions.

(b) [3–]* Give a bijective proof.

45. [2+] Let S(n, k) denote a Stirling number of the second kind. The generating function∑
n S(n, k)xn = xk/(1− x)(1− 2x) · · · (1− kx) implies the identity

S(n, k) =
∑

1a1−12a2−1 · · · kak−1, (1.123)

the sum being over all compositions a1 + · · · + ak = n. Give a combinatorial proof
of (1.123) analogous to the second proof of Proposition 1.3.7. That is, we want to
associate with each partition π of [n] into k blocks a composition a1 + · · ·+ak = n such
that exactly 1a1−12a2−1 · · · kak−1 partitions π are associated with this composition.

46. (a) [2] Let n, k ∈ P, and let j = ⌊k/2⌋. Let S(n, k) denote a Stirling number of the
second kind. Give a generating function proof that

S(n, k) ≡
(
n− j − 1

n− k

)
(mod 2).

(b) [3–] Give a combinatorial proof.

(c) [2] State and prove an analogous result for Stirling numbers of the first kind.

47. Let D be the operator d
dx

.

(a) [2]* Show that (xD)n =
∑n

k=0 S(n, k)xkDk.

(b) [2]* Show that

xnDn = xD(xD − 1)(xD − 2) · · · (xD − n+ 1) =
n∑

k=0

s(n, k)(xD)k.

(c) [2+]* Find the coefficients an,i,j in the expansion

(x+D)n =
∑

i,j

an,i,jx
iDj.

48. (a) [3] Let P (x) = a0 + a1x+ · · ·+ anx
n, ai ≥ 0, be a polynomial all of whose zeros

are negative real numbers. Regard ak/P (1) as the probability of choosing k, so
we have a probability distribution on [0, n]. Let µ = 1

P (1)

∑
k kak = P ′(1)/P (1),
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the mean of the distribution; and let m be the mode, i.e., am = maxk ak. Show
that

|µ−m| < 1.

More precisely, show that

m = k, if k ≤ µ < k + 1
k+2

m = k, or k + 1, or both, if k + 1
k+2
≤ µ ≤ k + 1− 1

n−k+1

m = k + 1, if k + 1− 1
n−k+1

< µ ≤ k + 1.

(b) [2] Fix n. Show that the signless Stirling number c(n, k) is maximized at k =
⌊1 + 1

2
+ 1

3
+ · · ·+ 1

n
⌋ or k = ⌈1 + 1

2
+ 1

3
+ · · ·+ 1

n
⌉. In particular, k ∼ log(n).

(c) [3] Let S(n, k) denote a Stirling number of the second kind, and define Kn by
S(n,Kn) ≥ S(n, k) for all k. Let t be the solution of the equation tet = n.
Show that for sufficiently large n (and probably all n), either Kn + 1 = ⌊et⌋ or
Kn + 1 = ⌈et⌉.

49. (a) [2+] Deduce from equation (1.38) that all the (complex) zeros of Ad(x) are real
and simple. (Use Rolle’s theorem.)

(b) [2–]* Deduce from Exercise 1.133(b) that the polynomial
∑n

k=1 k!S(n, k)xk has
only real zeros.

50. A sequence α = (a0, a1, . . . , an) of real numbers is unimodal if for some 0 ≤ j ≤ n we
have a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ aj+2 ≥ · · · ≥ an, and is log-concave if a2

i ≥ ai−1ai+1

for 1 ≤ i ≤ n − 1. We also say that α has no internal zeros if there does not exist
i < j < k with ai 6= 0, aj = 0, ak 6= 0, and that α is symmetric if ai = an−i for all i.
Define a polynomial P (x) =

∑
aix

i to be unimodal, log-concave, etc., if the sequence
(a0, a1, . . . , an) of coefficients has that property.

(a) [2–]* Show that a log-concave sequence of nonnegative real numbers with no
internal zeros is unimodal.

(b) [2+] Let P (x) =
∑n

i=0 aix
i =

∑n
i=0

(
n
i

)
bix

i ∈ R[x]. Show that if all the zeros of
P (x) are real, then the sequence (b0, b1, . . . , bn) is log-concave. (When all ai ≥ 0,
this statement is stronger than the assertion that (a0, a1, . . . , an) is log-concave.)

(c) [2+] Let P (x) =
∑m

i=0 aix
i and Q(x) =

∑n
i=0 bix

i be symmetric, unimodal, and
have nonnegative coefficients. Show that the same is true for P (x)Q(x).

(d) [2+] Let P (x) and Q(x) be log-concave with no internal zeros and nonnegative
coefficients. Show that the same is true for P (x)Q(x).

(e) [2] Show that the polynomials
∑

w∈Sn
xdes(w) and

∑
w∈Sn

xinv(w) are symmetric
and unimodal.

(f) [4–] Let 1 ≤ p ≤ n− 1. Given w = a1 · · ·an ∈ Sn, define

desp(w) = #{(i, j) : i < j ≤ i+ p, ai > aj}.
Thus des1 = des and desn−1 = inv. Show that the polynomial

∑
w∈Sn

xdesp(w) is
symmetric and unimodal.
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(g) [2+] Let S be a subset of {(i, j) : 1 ≤ i < j ≤ n}. An S-inversion of w =
a1 · · ·an ∈ Sn is a pair (i, j) ∈ S for which ai > aj . Let invS(w) denote the
number of S-inversions of w. Find a set S (for a suitable value of n) for which
the polynomial PS(x) :=

∑
w∈Sn

xinvS(w) is not unimodal.

51. [3–] Let k, n ∈ P with k ≤ n. Let V (n, k) denote the volume of the region Rnk in Rn

defined by

0 ≤ xi ≤ 1, for 1 ≤ i ≤ n

k − 1 ≤ x1 + x2 + · · ·+ xn ≤ k.

Show that V (n, k) = A(n, k)/n!, where A(n, k) is an Eulerian number.

52. [3–] Fix b ≥ 2. Choose n random N -digit integers in base b (allowing intial digits equal
to 0). Add these integers using the usual addition algorithm. For 0 ≤ j ≤ n − 1, let
f(j) be the number of times that we carry j in the addition process. For instance, if
we add 71801, 80914, and 62688 in base 10, then f(0) = 1 and f(1) = f(2) = 2. Show
that as N → ∞, the expected value of f(j)/N (i.e., the expected proportion of the
time we carry a j) approaches A(n, j + 1)/n!, where A(n, k) is an Eulerian number.

53. (a) [2]* The Eulerian Catalan number is defined by ECn = A(2n+ 1, n+ 1)/(n+ 1).
The first few Eulerian Catalan numbers, beginning with EC0 = 1, are 1, 2, 22,
604, 31238. Show that ECn = 2A(2n, n+ 1), whence ECn ∈ Z.

(b) [3–]* Show that ECn is the number of permutations w = a1a2 · · ·a2n+1 with n
descents, such that every left factor a1a2 · · ·ai has at least as many ascents as
descents. For n = 1 we are counting the two permutations 132 and 231.

54. [2]* How many n-element multisets on [2m] are there satisfying: (i) 1, 2, . . . , m appear
at most once each, and (ii) m+1, m+2, . . . , 2m appear an even number of times each?

55. [2–]* If w = a1a2 · · ·an ∈ Sn then let wr = an · · ·a2a1, the reverse of w. Express
inv(wr), maj(wr), and des(wr) in terms of inv(w), maj(w), and des(w), respectively.

56. [2+] Let M be a finite multiset on P. Generalize equation (1.41) by showing that

∑

w∈SM

qinv(w) =
∑

w∈SM

qmaj(w),

where inv(w) and maj(w) are defined in Section 1.7. Try to give a proof based on
results in Section 1.4 rather than generalizing the proof of (1.41).

57. [2+] Let w = w1w2 · · ·wn ∈ Sn. Show that the following conditions are equivalent.

(i) Let C(i) be the set of indices j of the columns Cj that intersect the ith row
of the diagram D(w) of w. For instance, if w = 314652 as in Figure 1.5, then
C(1) = {1, 2}, C(3) = {2}, C(4) = {2, 5}, C(5) = {2}, and all other C(i) = ∅.
Then for every i, j, either C(i) ⊆ C(j) or C(j) ⊆ C(i).
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(ii) Let λ(w) be the entries of the inversion table I(w) of w written in decreasing order.
For instance, I(52413) = (3, 1, 2, 1, 0) and λ(52413) = (3, 2, 1, 1, 0). Regard λ as
a partition of inv(w). Then λ(w−1) = λ(w)′, the conjugate partition to λ(w).

(iii) The permutation w is 2143-avoiding, i.e., there do not exist a < b < c < d for
which wb < wa < wd < wc.

58. For u ∈ Sk, let su(n) = #Su(n), the number of permutations w ∈ Sn avoiding u. If
also v ∈ Sk, then write u ∼ v if su(n) = sv(n) for all n ≥ 0 (an obvious equivalence
relation). Thus by the discussion preceding Proposition 1.5.1, u ∼ v for all u, v ∈ S3.

(a) [2]* Let u, v ∈ Sk. Suppose that the permutation matrix Pv can be obtained from
Pu by one of the eight dihedral symmetries of the square. For instance, Pu−1 and
be obtained from Pu by reflection in the main diagonal. Show that u ∼ v. We
then say that u and v are equivalent by symmetry, denoted u ≈ v. Thus ≈ is a
finer equivalence relation than ∼. What are the ≈ equivalence classes for S3?

(b) [3] Show that there are exactly three ∼ equivalence classes for S4. The equivalence
classes are given by {1234, 1243, 2143, . . .}, {3142, 1342, . . .}, and {1342, . . .},
where the omitted permutations are obtained by ≈ equivalence.

59. [3] Let su(n) have the meaning of the previous exercise. Show that cu := limn→∞ su(n)1/n

exists and satisfies 1 < cu <∞.

60. [2+] Define two permutations in Sn to be equivalent if one can be obtained from
the other by interchanging adjacent letters that differ by at least two, an obvious
equivalence relation. For instance, when n = 3 we have the four equivalence classes
{123}, {132, 312}, {213, 231}, {321}. Describe the equivalence classes in terms of more
familiar objects. How many equivalence classes are there?

61. (a) [3–] Let w = w1 · · ·wn. Let

F (x; a, b, c, d) =
∑

n≥1

∑

w∈Sn

av(w)bp(w)−1cr(w)df(w)x
n

n!
,

where v(w) denotes the number of valleys wi of w for 1 ≤ i ≤ n (where w0 =
wn+1 = 0 as preceding Proposition 1.5.3), p(w) the number of peaks, r(w) the
number of double rises, and f(w) the number of double falls. For instance, if
w = 32451, then 3 is a peak, 2 is a valley, 4 is a double rise, 5 is a peak, and 1 is
a double fall. Thus

F (x; a, b, c, d) = x+ (c+ d)
x2

2!
+ (c2 + d2 + 2ab+ 2cd)

x3

3!

+(c3 + d3 + 3cd2 + 3c2d+ 8abc + 8abd)
x4

4!
+ ·.

Show that

F (x; a, b, c, d) =
evx − eux
veux − uevx , (1.124)
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where uv = ab and u + v = c + d. In other words, u and v are zeros of the
polynomial z2 − (c + d)z + ab; it makes no difference which zero we call u and
which v.

(b) [2–] Let r(n, k) be the number of permutations w ∈ Sn with k peaks. Show that

∑

n≥0

∑

k≥0

r(n, k)tk
xn

n!
=

1 + u tan(xu)

1− tan(xu)
u

, (1.125)

where u =
√
t− 1.

(c) [2+] A proper double fall or proper double descent of a permutation w = a1a2 · · ·an
is an index 1 < i < n for which ai−1 > ai > ai+1. (Compare with the definition
of a double fall or double descent, where we also allow i = 1 and i = n with the
convention a0 = an+1 = 0.) Let f(n) be the number of permutations w ∈ Sn

with no proper double descents. Show that

∑

n≥0

f(n)
xn

n!
=

1
∑

j≥0

(
x3j

(3j)!
− x3j+1

(3j + 1)!

) (1.126)

= 1 + x+ 2
x2

2!
+ 5

x3

3!
+ 17

x4

4!
+ 70

x5

5!
+ 349

x6

6!

+2017
x7

7!
+ 13358

x8

8!
+ · · · .

62. In this exercise we consider one method for generalizing the disjoint cycle decom-
position of permutations of sets to multisets. A multiset cycle of P is a sequence
C = (i1, i2, . . . , ik) of positive integers with repetitions allowed, where we regard
(i1, i2, . . . , ik) as equivalent to (ij, ij+1, . . . , ik, i1, . . . , ij−1) for 1 ≤ j ≤ k. Introduce
indeterminates x1, x2, . . . , and define the weight of C by w(C) = xi1 · · ·xik . A multiset
permutation or multipermutation of a multiset M is a multiset of multiset cycles, such
that M is the multiset of all elements of the cycles. For instance, the multiset {1, 1, 2}
has the following four multipermutations: (1)(1)(2), (11)(2), (12)(1), (112). The weight
w(π) of a multipermutation π = C1C2 · · ·Cj is given by w(π) = w(C1) · · ·w(Cj).

(a) [2–]* Show that ∏

C

(1− w(C))−1 =
∑

π

w(π),

where C ranges over all multiset cycles on P and π over all (finite) multiset
permutations on P.

(b) [2+] Let pk = xk1 + xk2 + · · · . Show that

∏

C

(1− w(C))−1 =
∏

k≥1

(1− pk)−1.
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(c) [1+] Let fk(n) denote the number of multiset permutations on [k] of total size
n. For instance, f2(3) = 14, given by (1)(1)(1), (1)(1)(2), (1)(2)(2), (2)(2)(2),
(11)(1), (11)(2), (12)(1), (12)(2), (22)(1), (22)(2), (111), (112), (122), (222). De-
duce from (b) that ∑

n≥0

fk(n)xn =
∏

i≥1

(1− kxi)−1.

(d) [3–] Find a direct combinatorial proof of (b) or (c).

63. (a) [2–] We are given n square envelopes of different sizes. In how many different
ways can they be arranged by inclusion? For instance, if n = 3 there are six ways;
namely, label the envelopes A,B,C with A the largest and C the smallest, and
let I ∈ J mean that envelope I is contained in envelope J . Then the six ways
are: (1) ∅, (2) B ∈ A, (3) C ∈ A, (4) C ∈ B, (5) B ∈ A, C ∈ A, (6) C ∈ B ∈ A.

(b) [2] How many arrangements have exactly k envelopes that are not contained in
another envelope? That don’t contain another envelope?

64. (a) [2] Let f(n) be the number of sequences a1, . . . , an of positive integers such that
for each k > 1, k only occurs if k−1 occurs before the last occurrence of k. Show
that f(n) = n!. (For n = 3 the sequences are 111, 112, 121, 122, 212, 123.)

(b) [2] Show that A(n, k) of these sequences satisfy max{a1, . . . , an} = k.

65. [3] Let y =
∏

n≥1(1− xn)−1. Show that

4y3y′′ + 5xy3y′′′ + x2y3y(iv) − 16y2y′2 − 15xy2y′y′′ + 20x2y2y′y′′′

−19x2y2y′′2 + 10xyy′3 + 12x2yy′2y′′ + 6x2y′4 = 0. (1.127)

66. [2–]* Let pk(n) denote the number of partitions of n into k parts. Give a bijective
proof that

p0(n) + p1(n) + · · ·+ pk(n) = pk(n + k).

67. [2–]* Express the number of partitions of n with no part equal to 1 in terms of values
p(k) of the partition function.

68. [2]* Let n ≥ 1, and let f(n) be the number of partitions of n such that for all k, the
part k occurs at most k times. Let g(n) be the number of partitions of n such that no
part has the form i(i+1), i.e., no parts equal to 2, 6, 12, 20, . . . . Show that f(n) = g(n).

69. [2]* Let f(n) denote the number of self-conjugate partitions of n all of whose parts are
even. Express the generating function

∑
n≥0 f(n)xn as a simple product.

70. (a) [2] Find a bijection between partitions λ ⊢ n of rank r and integer arrays

Aλ =

(
a1 a2 · · · ar
b1 b2 · · · br

)

such that a1 > a2 > · · · > ar ≥ 0, b1 > b2 > · · · > br ≥ 0, and r+
∑

(ai + bi) = n.
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(b) [2+] A concatenated spiral self-avoiding walk (CSSAW) on the square lattice is
a lattice path in the plane starting at (0, 0), with steps (±1, 0) and (0,±1) and
first step (1, 0), with the following three properties: (i) the path is self-avoiding,
i.e, it never returns to a previously visited lattice point, (ii) every step after the
first must continue in the direction of the previous step or turn right, and (iii)
at the end of the walk it must be possible to turn right and walk infinitely many
steps in the direction faced without intersecting an earlier part of the path. For
instance, writing N = (0, 1), etc., the five CSSAW’s of length four are NNNN ,
NNNE, NNEE, NEEE, and NESS. Note for instance that NEES is not a
CSSAW since continuing with steps WWW · · · will intersect (0, 0). Show that
the number of CSSAW’s of length n is equal to p(n), the number of partitions of
n.

71. [2+] How many pairs (λ, µ) of partitions of integers are there such that λ ⊢ n, and
the Young diagram of µ is obtained from the Young diagram of λ by adding a single
square? Express your answer in terms of the partition function values p(k) for k ≤ n.
Give a simple combinatorial proof.

72. (a) [3–] Let λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) be partitions. Define µ ≤ λ if
µi ≤ λi for all i. Show that

∑

µ≤λ
q|µ|+|λ| =

1

(1− q)(1− q2)2(1− q3)2(1− q4)2 · · · . (1.128)

(b) [3–] Show that the number of pairs (λ, µ) such that λ and µ have distinct parts,
µ ≤ λ as in (a), and |λ| + |µ| = n, is equal to p(n), the number of partitions of
n. For instance, when n = 5 we have the seven pairs (∅, 5), (∅, 41), (∅, 32), (1, 4),
(2, 3), (1, 31), and (2, 21).

73. [2] Let λ be a partition. Show that

∑

i

⌈
λ2i−1

2

⌉
=

∑

i

⌈
λ′2i−1

2

⌉

∑

i

⌊
λ2i−1

2

⌋
=

∑

i

⌈
λ′2i
2

⌉

∑

i

⌊
λ2i

2

⌋
=

∑

i

⌊
λ′2i
2

⌋
.

74. [2] Let pk(n) denote the number of partitions of n into k parts. Fix t ≥ 0. Show that as
n→∞, pn−t(n) becomes eventually constant. What is this constant f(t)? What is the
least value of n for which pn−t(n) = f(t)? Your arguments should be combinatorial.

75. [2–] Let pk(n) be as above, and let qk(n) be the number of partitions of n into k distinct
parts. For example, q3(8) = 2, corresponding to (5, 2, 1) and (4, 3, 1). Give a simple
combinatorial proof that qk

(
n +

(
k
2

))
= pk(n).
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76. [2] Prove the partition identity

∏

i≥1

(1 + qx2i−1) =
∑

k≥0

xk
2
qk

(1− x2)(1− x4) · · · (1− x2k)
. (1.129)

77. [3–] Give a “subtraction-free” bijective proof of the pentagonal number formula by
proving directly the identity

1 +

∑
n odd

(
xn(3n−1)/2 + xn(3n+1)/2

)
∏

j≥1(1− xj)
=

1 +
∑

n even

(
xn(3n−1)/2 + xn(3n+1)/2

)
∏

j≥1(1− xj)
.

78. (a) [2] The logarithmic derivative of a power series F (x) is d
dx

logF (x) = F ′(x)/F (x).
By logarithmically differentiating the power series

∑
n≥0 p(n)xn =

∏
i≥1(1−xi)−1,

derive the recurrence

n · p(n) =
n∑

i=1

σ(i)p(n− i),

where σ(i) is the sum of the divisors of i.

(b) [2+] Give a combinatorial proof.

79. (a) [2+] Given a set S ⊆ P, let pS(n) (resp. qS(n)) denote the number of partitions
of n (resp. number of partitions of n into distinct parts) whose parts belong to
S. (These are special cases of the function p(S, n) of Corollary 1.8.2.) Call a pair
(S, T ), where S, T ⊆ P, an Euler pair if pS(n) = qT (n) for all n ∈ N. Show that
(S, T ) is an Euler pair if and only if 2T ⊆ T (where 2T = {2i : i ∈ T}) and
S = T − 2T .

(b) [1+] What is the significance of the case S = {1}, T = {1, 2, 4, 8, . . .}?

80. [2+] If λ is a partition of an integer n, let fk(λ) be the number of times k appears
as a part of λ, and let gk(λ) be the number of distinct parts of λ that occur at least
k times. For example, f2(4, 2, 2, 2, 1, 1) = 3 and g2(4, 2, 2, 2, 1, 1) = 2. Show that∑
fk(λ) =

∑
gk(λ), where k ∈ P is fixed and both sums range over all partitions λ of

a fixed integer n ∈ P.

81. [2+] A perfect partition of n ≥ 1 is a partition λ ⊢ n which “contains” precisely one
partition of each positive integer m ≤ n. In other words, regarding λ as the multiset
of its parts, for each m ≤ n there is a unique submultiset of λ whose parts sum to
m. Show that the number of perfect partitions of n is equal to the number of ordered
factorizations (with any number of factors) of n+ 1 into integers ≥ 2.

Example. The perfect partitions of 5 are (1, 1, 1, 1, 1), (3, 1, 1), and (2, 2, 1). The
ordered factorizations of 6 are 6 = 2 · 3 = 3 · 2.

82. [3] Show that the number of partitions of 5n+ 4 is divisible by 5.
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83. [3–] Let λ = (λ1, λ2, . . . ) ⊢ n. Define

α(λ) =
∑

i

⌈λ2i−1/2⌉

β(λ) =
∑

i

⌊λ2i−1/2⌋

γ(λ) =
∑

i

⌈λ2i/2⌉

δ(λ) =
∑

i

⌊λ2i/2⌋.

Let a, b, c, d be (commuting) indeterminates, and define

w(λ) = aα(λ)bβ(λ)cγ(λ)dδ(λ).

For instance, if λ = (5, 4, 4, 3, 2) then w(λ) is the product of the entries of the diagram

a b a b a
c d c d
a b a b
c d c
a b

Show that

∑

λ∈Par

w(λ) =
∏

j≥1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbjcj−1dj−1)(1− ajbj−1cjdj−1)
, (1.130)

where Par denotes the set of all partitions λ of all integers n ≥ 0.

84. [2]* Show that the number of partitions of n in which each part appears exactly 2, 3,
or 5 times is equal to the number of partitions of n into parts congruent to ±2, ±3,
6 (mod 12).

85. [2+]* Prove that the number of partitions of n in which no part appears exactly once
equals the number of partitions of n into parts not congruent to ±1 (mod 6).

86. [3] Prove that the number of partitions of n into parts congruent to 1 or 5 (mod 6)
equals the number of partitions of n in which the difference between all parts is at
least 3 and between multiples of 3 is at least 6.

87. [3–]* Let Ak(n) be the number of partitions of n into odd parts (repetition allowed)
such that exactly k distinct parts occur. For instance, when n = 35 and k = 3,
one of the partitions being enumerated is (9, 9, 5, 3, 3, 3, 3). Let Bk(n) be the number
of partitions λ = (λ1, . . . , λr) of n such that the sequence λ1, . . . , λr is composed of
exactly k noncontiguous sequences of one or more consecutive integers. For instance,
when n = 44 and k = 3, one of the partitions being enumerated is (10, 9, 8, 7, 5, 3, 2),
which is composed of 10, 9, 8, 7 and 5 and 3, 2. Show that Ak(n) = Bk(n) for all k and
n. Note that summing over all k gives Proposition 1.8.5, i.e., podd(n) = q(n) .
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88. (a) [3] Prove the identities

∑

n≥0

xn
2

(1− x)(1− x2) · · · (1− xn) =
1∏

k≥0

(1− x5k+1)(1− x5k+4)

∑

n≥0

xn(n+1)

(1− x)(1− x2) · · · (1− xn) =
1∏

k≥0

(1− x5k+2)(1− x5k+3)
.

(b) [2] Show that the identities in (a) are equivalent to the following combinatorial
statements:

• The number of partitions of n into parts ≡ ±1 (mod 5) is equal to the number
of partitions of n whose parts differ by at least 2.

• The number of partitions of n into parts ≡ ±2 (mod 5) is equal to the number
of partitions of n whose parts differ by at least 2 and for which 1 is not a
part.

(c) [2]* Let f(n) be the number of partitions λ ⊢ n satisfying ℓ(λ) = rank(λ). Show
that f(n) is equal to the number of partitions of n whose parts differ by at least
2.

89. [3] A lecture hall partition of length k is a partition λ = (λ1, . . . , λk) (some of whose
parts may be 0) satisfying

0 ≤ λk
1
≤ λk−1

2
≤ · · · ≤ λ1

k
.

Show that the number of lecture hall partitions of n of length k is equal to the number
of partitions of n whose parts come from the set 1, 3, 5, . . . , 2k − 1 (with repetitions
allowed).

90. [3] Let f(n) be the number of partitions of n all of whose parts are Lucas numbers
L2n+1 of odd index. For instance, f(12) = 5, corresponding to

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
4 + 4 + 1 + 1 + 1 + 1
4 + 4 + 4
11 + 1

Let g(n) be the number of partitions λ = (λ1, λ2, . . . ) such that λi/λi+1 >
1
2
(3 +

√
5)

whenever λi+1 > 0. For instance, g(12) = 5, corresponding to

12, 11 + 1, 10 + 2, 9 + 3, 8 + 3 + 1.

Show that f(n) = g(n) for all n ≥ 1.
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91. (a) [3–] Show that

∑

n∈Z

xnqn
2

=
∏

k≥1

(1− q2k)(1 + xq2k−1)(1 + x−1q2k−1).

(b) [2] Deduce from (a) the Pentagonal Number Formula (Proposition 1.8.7).

(c) [2] Deduce from (a) the two identities

∏

k≥1

1− qk
1 + qk

=
∑

n∈Z

(−1)nqn
2

(1.131)

∏

k≥1

1− q2k

1− q2k−1
=

∑

n≥0

q(
n+1

2 ). (1.132)

(d) [2+] Deduce from (a) the identity

∏

k≥1

(1− qk)3 =
∑

n≥0

(−1)n(2n+ 1)qn(n+1)/2.

Hint. First substitute −xq−1/2 for x and q1/2 for q.

92. [3] Let S ⊆ P and let p(S, n) denote the number of partitions of n whose parts belong
to S. Let

S = {n : n odd or n ≡ ±4,±6,±8,±10 (mod 32)}
T = {n : n odd or n ≡ ±2,±8,±12,±14 (mod 32)}.

Show that p(S, n) = p(T , n − 1) for all n ≥ 1. Equivalently, we have the remarkable
identity ∏

n∈S

1

1− xn = 1 + x
∏

n∈T

1

1− xn . (1.133)

93. [3] Let

S = ±{1, 4, 5, 6, 7, 9, 11, 13, 16, 21, 23, 28 (mod66)}
T = ±{1, 4, 5, 6, 7, 9, 11, 14, 16, 17, 27, 29 (mod66)},

where
±{a, b, . . . (modm)} := {n ∈ P : n ≡ ±a,±b, . . . (modm)}.

Show that p(S, n) = p(T, n) for all n ≥ 1 except n = 13. Equivalently, we have another
remarkable identity similar to equation (1.133):

∏

n∈S

1

1− xn = x13 +
∏

n∈T

1

1− xn .

94. (a) [3–] Let n ≥ 0. Show that the following numbers are equal.
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• The number of solutions to n =
∑

i≥0 ai2
i, where ai = 0, 1, or 2.

• Then number of odd integers k for which the Stirling number S(n + 1, k) is
odd.

• The number of odd binomial coefficients of the form
(
n−k
k

)
, 0 ≤ k ≤ n.

• The number of ways to write bn as a sum of distinct Fibonacci numbers Fn,
where ∏

i≥0

(1 + xF2i) =
∑

n≥0

xbn , b0 < b1 < · · · .

(b) [2–] Denote by an+1 the number being counted by (a), so (a1, a2, . . . , a10) =
(1, 1, 2, 1, 3, 2, 3, 1, 4, 3). Deduce from (a) that

∑

n≥0

an+1x
n =

∏

i≥0

(1 + x2i

+ x2i+1

).

(c) [2] Deduce from (a) that a2n = an and a2n+1 = an + an+1.

(d) [3–] Show that every positive rational number can be written in exactly one way
as a fraction an/an+1.

95. [3] At time n = 1 place a line segment (toothpick) of length one on the xy-plane,
centered at (0, 0) and parallel to the y-axis. At time n > 1, place additional line
segments that are centered at the end and perpendicular to an exposed toothpick end,
where an exposed end is the end of a toothpick that is neither the end nor the midpoint
of another toothpick. Figure 1.28 shows the configurations obtained for times n ≤ 6.
Let f(n) be the total number of toothpicks that have been placed up to time n, and
let

F (x) =
∑

n≥1

f(n)xn.

Figure 1.28 shows that

F (x) = x+ 3x2 + 7x3 + 11x4 + 15x5 + 23x6 + · · · .

Show that

F (x) =
x

(1− x)(1− 2x)

(
1 + 2x

∏

k≥0

(
1 + x2k−1 + 2x2k

))
.

96. Define

x
∏

n≥1

(1− xn)24 =
∑

n≥1

τ(n)xn

= x− 24x2 + 252x3 − 1472x4 + 4830x5 − 6048x6 − 16744x7 + · · · .

(a) [3+] Show that τ(mn) = τ(m)τ(n) if m and n are relatively prime.
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Figure 1.28: The growth of toothpicks

(b) [3+] Show that if p is prime and n ≥ 1 then

τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1).

(c) [4] Show that if p is prime then |τ(p)| < 2p11/2. Equivalently, write

∑

n≥0

τ(pn)xn =
Pp(x)

1− τ(p)x+ p11x2
,

so by (b) and Theorem 4.4.1.1 the numerator Pp(x) is a polynomial. Then the
zeros of the denominator are not real.

(d) [5] Show that τ(n) 6= 0 for all n ≥ 1.

97. [3–] Let f(n) be the number of partitions of 2n whose Ferrers diagram can be covered by
n edges, each connecting two adjacent dots. For instance, (4, 3, 3, 3, 1) can be covered
as follows:

Show that
∑

n≥0 f(n)xn =
∏

i≥1(1− xi)−2.

98. [2+] Let n, a, k ∈ N and ζ = e2πi/n. Show that

(
na

k

)

q=ζ

=

{ (
a
b

)
, k = nb

0, otherwise.

99. [2] Let 0 ≤ k ≤ n and f(q) =
(

n

k

)
. Compute f ′(1). Try to avoid a lot of computation.

100. [2+] State and prove a q-analogue of the Chu-Vandermonde identity

n∑

i=0

(
a

i

)(
b

n− i

)
=

(
a + b

n

)

(Example 1.1.17).
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101. [2]* Explain why we cannot set q = 1 on both sides of equation (1.85) to obtain the
identity

1 =
∑

k≥0

xk

k!
.

102. (a) [2]* Let x and y be variables satisfying the commutation relation yx = qxy, where
q commutes with x and y. Show that

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

(b) [2]* Generalize to (x1 + x2 + · · ·+ xm)n, where xixj = qxjxi for i > j.

(c) [2+]* Generalize further to (x1 + x2 + · · ·+ xm)n, where xixj = qjxjxi for i > j,
and where the qj ’s are variables commuting with all the xi’s and with each other.

103. (a) [3+] Given a partition λ (identified with its Young diagram) and u ∈ λ, let a(u)
(called the arm length of u) denote the number of squares directly to the right
of u, counting u itself exactly once. Similarly let l(u) (called the leg length of u)
denote the number of squares directly below u, counting u itself once. Thus if
u = (i, j) then a(u) = λi − j + 1 and l(u) = λ′j − i+ 1. Define

γ(λ) = #{u ∈ λ : a(u)− l(u) = 0 or 1}.

Show that ∑

λ⊢n
qγ(λ) =

∑

λ⊢n
qℓ(λ), (1.134)

where ℓ(λ) denotes the length (number of parts) of λ.

(b) [2]* Clearly the coefficient of xn in the right-hand side of equation (1.134) is 1.
Show directly (without using (a)) that the same is true for the left-hand side.

104. [2+] Let n ≥ 1. Find the number f(n) of integer sequences (a1, a2, . . . , an) such that
0 ≤ ai ≤ 9 and a1 +a2 + · · ·+an ≡ 0 (mod 4). Give a simple explicit formula (no sums)
that depends on the congruence class of n modulo 4.

105. (a) [3–] Let n ∈ P, and let f(n) denote the number of subsets of Z/nZ (the integers
modulo n) whose elements sum to 0 in Z/nZ. For instance, f(4) = 4, correspond-
ing to ∅, {0}, {1, 3}, {0, 1, 3}. Show that

f(n) =
1

n

∑

d|n
d odd

φ(d)2n/d,

where φ denotes Euler’s totient function.

(b) [5–] When n is odd, it can be shown using (a) (see Exercise 7.112) that f(n) is
equal to the number of necklaces (up to cyclic rotation) with n beads, each bead
colored black or white. Give a combinatorial proof. (This is easy if n is prime.)
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(c) [5–] Generalize. For instance, investigate the number of subsets S of Z/nZ sat-
isfying

∑
i∈S p(i) ≡ α (modn), where p is a fixed polynomial and α ∈ Z/nZ is

fixed.

106. [2] Let f(n, k) be the number of sequences a1a2 · · ·an of positive integers such that the
largest number occurring is k and such that the first occurrence of i appears before the
first occurrence of i+ 1 (1 ≤ i ≤ k − 1). Express f(n, k) in terms of familiar numbers.
Give a combinatorial proof. (It is assumed that every number 1, 2, . . . , k occurs at least
once.)

107. [1+]* Give a direct combinatorial proof of equation (1.94e), viz.,

B(n+ 1) =

n∑

i=0

(
n

i

)
B(i), n ≥ 0.

108. (a) [2+] Give a combinatorial proof that the number of partitions of [n] such that no
two consecutive integers appear in the same block is the Bell number B(n− 1).

(b) [2+]* Give a combinatorial proof that the number of partitions of [n] such that
no two cyclically consecutive integers (i.e., two integers i, j for which j ≡ i +
1 (modn)) appear in the same block is equal to the number of partitions of [n]
with no singleton blocks.

109. [2+]

(a) Show that the number of permutations a1 · · ·an ∈ Sn for which there is no 1 ≤
i < j ≤ n− 1 satisfying ai < aj < aj+1 is equal to the Bell number B(n).

(b) Show that the same conclusion holds if the condition ai < aj < aj+1 is replaced
with ai < aj+1 < aj .

(c) Show that the number of permutations w ∈ Sn satisfying the conditions of both
(a) and (b) is equal to the number of involutions in Sn.

110. [3–] Let f(n) be the number of partitions π of [n] such that the union of no proper
subset of the blocks of π is an interval [a, b]. For instance, f(4) = 2, corresponding to
the partitions 13-24 and 1234, while f(5) = 6. Set f(0) = 1. Let

F (x) =
∑

n≥0

f(n)xn = 1 + x+ x2 + x3 + 2x4 + 6x5 + · · · .

Find the coefficients of (x/F (x))〈−1〉.

111. [3–] Let f(n) be the number of partitions π of [n] such that no block of π is an interval
[a, b] (allowing a = b). Thus f(1) = f(2) = f(3) = 0 and f(4) = 1, corresponding to
the partition 13-24. Let

F (x) =
∑

n≥0

f(n)xn = 1 + x4 + 5x5 + 21x6 + · · · .

Express F (x) in terms of the ordinary generating function G(x) =
∑

n≥0B(n)xn =
1 + x+ 2x2 + 5x3 + 15x4 + · · · .
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112. [2]* How many permutations w ∈ Sn have the same number of cycles as weak ex-
cedances?

113. [2–]* Fix k, n ∈ P. How many sequences (T1, . . . , Tk) of subsets Ti of [n] are there such
that the nonempty Ti form a partition of [n]?

114. (a) [2–]* How many permutations w = a1a2 · · ·an ∈ Sn have the property that for
all 1 ≤ i < n, the numbers appearing in w between i and i + 1 (whether i is to
the left or right of i+ 1) are all less than i? An example of such a permutation is
976412358.

(b) [2–]* How many permutations a1a2 · · ·an ∈ Sn satisfy the following property: if
2 ≤ j ≤ n, then |ai − aj | = 1 for some 1 ≤ i < j? Equivalently, for all 1 ≤ i ≤ n,
the set {a1, a2, . . . , ai} consists of consecutive integers (in some order). E.g., for
n = 3 there are the four permutations 123, 213, 231, 321. More generally, find
the number of such permutations with descent set S ⊆ [n− 1].

115. [3–] Let n = 217 + 2 and define Qn(t) =
∑

S⊆[n−1] t
βn(S). Show that e2πi/n is (at least)

a double root of Qn(t).

116. (a) [2]* Show that the expected number of cycles of a random permutation w ∈ Sn

(chosen from the uniform distribution) is given by the harmonic number Hn =
1 + 1

2
+ 1

3
+ · · ·+ 1

n
∼ log n.

(b) [3] Let f(n) be the expected length of the longest cycle of a random permutation
w ∈ Sn (again from the uniform distribuiton). Show that

lim
n→∞

f(n)

n
=

∫ ∞

0

exp

(
−x−

∫ ∞

x

e−y

y
dy

)
dx = 0.62432965 · · · .

117. [2+] Let w be a random permutation of 1, 2, . . . , n (chosen from the uniform distribu-
tion). Fix a positive integer 1 ≤ k ≤ n. What is the probability pnk that in the disjoint
cycle decomposition of w, the length of the cycle containing 1 is k? In other words,
what is the probability that k is the least positive integer for which wk(1) = 1? Give
a simple proof avoiding generating functions, induction, etc.

118. (a) [2]* Let w be a random permutation of 1, 2, . . . , n (chosen from the uniform dis-
tribution), n ≥ 2. Show that the probability that 1 and 2 are in the same cycle
of w is 1/2.

(b) [2+] Generalize (a) as follows. Let 2 ≤ k ≤ n, and let λ = (λ1, λ2, . . . , λℓ) ⊢ k,
where λℓ > 0 . Choose a random permutation w ∈ Sn. Let Pλ be the probability
that 1, 2, . . . , λ1 are in the same cycle C1 of w, and λ1 + 1, . . . , λ1 + λ2 are in the
same cycle C2 of w different from C1, etc. Show that

Pλ =
(λ1 − 1)! · · · (λℓ − 1)!

k!
.
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(c) [3–] Same as (b), except now we take w uniformly from the alternating group An.
Let the resulting probability be Qλ. Show that

Qλ =
(λ1 − 1)! · · · (λℓ − 1)!

(k − 2)!

(
1

k(k − 1)
+ (−1)n−ℓ

1

n(n− 1)

)
.

119. [2+] Let Pn denote the probability that a random permutation (chosen from the uni-
form distribution) in S2n has all cycle lengths at most n. Show that limn→∞ Pn =
1− log 2 = 0.306852819 · · · .

120. [2+] Let Ek(n) denote the expected number of k-cycles of a permutation w ∈ Sn, as
discussed in Example 1.3.5. Give a simple combinatorial explanation of the formula
Ek(n) = 1/k, n ≥ k.

121. (a) [2]* Let f(n) denote the number of fixed-point free involutions w ∈ S2n (i.e., w2 =
1, and w(i) 6= i for all i ∈ [2n]). Find a simple expression for

∑
n≥0 f(n)xn/n!.

(Set f(0) = 1.)

(b) [2–]* If X ⊆ P, then write −X = {−i : i ∈ X}. Let g(n) be the number of ways
to choose a subset X of [n], and then choose fixed point free involutions w on
X ∪ (−X) and w̄ on X̄ ∪ (−X̄), where X̄ = {i ∈ [n] : i 6∈ X}. Use (a) to find a
simple expression for g(n).

(c) [2+]* Find a combinatorial proof for the formula obtained for g(n) in (b).

122. [2–]* Find
∑

w x
exc(w), where w ranges over all fixed-point free involutions in S2n and

exc(w) denotes the number of excedances of w.

123. [2]* Let An denote the alternating group on [n], i.e., the group of all permutations with
an even number of cycles of even length. Define the augmented cycle indicator Z̃An of
An by

Z̃An =
∑

w∈An

ttype(w),

as in equation (1.25). Show that

∑

n≥0

Z̃An

xn

n!
= exp

(
t1x+ t3

x3

3
+ t5

x5

5
+ · · ·

)
· cosh

(
t2
x2

2
+ t4

x4

4
+ t6

x6

6
+ · · ·

)
.

124. (a) [2] Let fk(n) denote the number of permutations w ∈ Sn with k inversions. Show
combinatorially that for n ≥ k,

fk(n + 1) = fk(n) + fk−1(n+ 1).

(b) [1+] Deduce from (a) that for n ≥ k, fk(n) is a polynomial in n of degree k and
leading coefficient 1/k!. For instance, f2(n) = 1

2
(n+ 1)(n− 2) for n ≥ 2.
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(c) [2+] Let gk(n) be the polynomial that agrees with fk(n) for n ≥ k. Find ∆jgk(−n);
that is, find the coefficients aj in the expansion

gk(−n) =
k∑

j=0

aj

(
n

j

)
.

125. [2+]* Find the number f(n) of binary sequences w = a1a2 · · ·ak (where k is arbitrary)
such that a1 = 1, ak = 0, and inv(w) = n. For instance, f(4) = 5, corresponding to
the sequences 10000, 11110, 10110, 10010, 1100. How many of these sequences have
exactly j 1’s?

126. [2+]* Show that
∑

w

qinv(w) = qn
n−1∏

j=0

(1 + q2 + q4 + · · ·+ q4j),

where w ranges over all fixed-point free involutions in S2n, and where inv(w) denotes
the number of inversions of w. Give a simple combinatorial proof analogous to the
proof of Corollary 1.3.13.

127. [2]

(a) Let w ∈ Sn, and let R(w) be the set of positions of the records (or left-to-right
maxima) of w. For instance, R(3265174) = {1, 3, 6}. For any finite set S of
positive integers, set xS =

∏
i∈S xi. Show that

∑

w∈Sn

qinv(w)xR(w) = x1(x2 + q)(x3 + q + 1) · · · (xn + q + q2 + · · ·+ qn−1). (1.135)

(b) Let V (w) be the set of the records themselves, e.g., V (3265174) = {3, 6, 7}. Show
that
∑

w∈Sn

qinv(w)xV (w) = (x1+q+q2+· · ·+qn−1)(x2+q+q2+· · ·+qn−2) · · · (xn−1+q)xn.

(1.136)

128. (a) [2] A permutation a1 · · ·an of [n] is called indecomposable or connected if n is the
least positive integer j for which {a1, a2, . . . , aj} = {1, 2, . . . , j}. Let f(n) be the
number of indecomposable permutations of [n], and set F (x) =

∑
n≥0 n!xn. Show

that ∑

n≥1

f(n)xn = 1− 1

F (x)
. (1.137)

(b) [2+] If a1 · · ·an is a permutation of [n], then ai is called a strong fixed point if (1)
j < i ⇒ aj < ai, and (2) j > i ⇒ aj > ai (so in particular ai = i). Let g(n) be
the number of permutations of [n] with no strong fixed points. Show that

∑

n≥0

g(n)xn =
F (x)

1 + xF (x)
.
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(c) [2+] A permutation w ∈ Sn is stabilized-interval-free (SIF) if there does not exist
1 ≤ i < j ≤ n for which w · [i, j] = [i, j] (as sets). For instance, 615342 fails to be
SIF since w · [3, 5] = [3, 5]. Let h(n) be the number of SIF permutations w ∈ Sn,
and set

H(x) =
∑

n≥0

h(n)xn = 1 + x+ x2 + 2x3 + 7x4 + 34x5 + 206x6 + · · · .

Show that
H(x) =

x
(∑

n≥0 n!xn+1
)〈−1〉 ,

where 〈−1〉 denotes compositional inverse (§5.4). Equivalently, by the Lagrange
inversion formula (Theorem 5.4.2), H(x) is uniquely defined by the condition

[xn−1]H(x)n = n!, n ≥ 1.

(d) [2+] A permutation w ∈ Sn is called simple if it maps no interval [i, j] of size
1 < j − i + 1 < n into another such interval. For instance, 3157462 is not
simple, since it maps [3, 6] into [4, 7] (as sets). Let k(n) be the number of simple
permutations w ∈ Sn, and set

K(x) =
∑

n≥1

k(n)xn = x+ 2x2 + 2x4 + 6x5 + 46x7 + 338x8 + · · · .

Show that

K(x) =
2

1 + x
−
(∑

n≥1

n!xn

)〈−1〉

.

129. (a) [2]* Let fk(n) be the number of indecomposable permutations w ∈ Sn with k
inversions. Generalizing equation (1.137), show that

∑

n≥1

fk(n)qkxn = 1− 1

F (q, x)
,

where F (q, x) =
∑

n≥0 (n)!xn. As usual, (n)! = (1 + q)(1 + q + q2) · · · (1 + q +
· · ·+ qn−1).

(b) [2] Write 1/F (q, x) =
∑

n≥0 gn(q)x
n, where gn(q) ∈ Z[q]. Show that

∑
n≥0 gn(q)

is a well-defined formal power series, even though it makes no sense to substitute
directly x = 1 in 1/F (q, x).

(c) [3] Write 1/F (q, x) in a form where it does make sense to substitute x = 1.

130. [2+] Let u(n) be the number of permutations w = a1 · · ·an ∈ Sn such that ai+1 6= ai±1
for 1 ≤ i ≤ n − 1. Equivalently, f(n) is the number of ways to place n nonattacking
kings on an n× n chessboard, no two on the same file or rank. Set

U(x) =
∑

n≥0

u(n)xn = 1 + x+ 2x4 + 14x5 + 90x6 + 646x7 + 5242x8 + · · · .
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Show that

U(x) = F

(
x(1− x)

1 + x

)
, (1.138)

where F (x) =
∑

n≥0 n!xn as in Exercise 1.128.

131. [2+]* An n-dimensional cube Kn has 2n facets (or (n − 1)-dimensional faces), which
come in n antipodal pairs. A shelling ofKn is equivalent to a linear ordering F1, F2, . . . , F2n

of its facets such that for all 1 ≤ i ≤ n− 1, the set {F1, . . . , F2i} does not consist of i
antipodal pairs. Let f(n) be the number of shellings of Kn. Show that

∑

n≥1

f(n)
xn

n!
= 1−

(∑

n≥0

(2n)!
xn

n!

)−1

.

132. [1+]* Let w ∈ Sn. Which of the following items doesn’t belong?

• inv(w) = 0

• maj(w) = 0

• des(w) = 0

• maj(w) = des(w) = inv(w)

• D(w) = ∅
• c(w) = n (where c(w) denotes the number of cycles of w)

• w5 = w12 = 1

133. (a) [2+] Let An(x) be the Eulerian polynomial. Give a combinatorial proof that
1
2
An(2) is equal to the number of ordered set partitions (i.e., partitions whose

blocks are linearly ordered) of an n-element set.

(b) [2+]* More generally, show that

An(x)

x
=

n−1∑

k=0

(n− k)!S(n, n− k)(x− 1)k.

Note that (n− k)!S(n, n− k) is the number of ordered partitions of an n-set into
n− k blocks.

134. [3–] Show that

An(x) =
∑

w

x1+des(w)(1 + x)n−1−2des(w),

where w ranges over all permutations in Sn with no proper double descents (as defined
in Exercise 1.61) and with no descent at the end. For instance, when n = 4 the
permutations are 1234, 1324, 1423, 2134, 2314, 2413, 3124, 3412, 4123.

135. (a) [2] Let An(x) be the Eulerian polynomial. Show that

An(−1) =

{
(−1)(n+1)/2En, n odd

0, n even.
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(b) [3–] Give a combinatorial proof of (a) when n is odd.

136. [2+] What sequence c = (c1, . . . , cn) ∈ Nn with
∑
ici = n maximizes the number of

w ∈ Sn of type c? For instance, when n = 4 the maximizing sequence is (1, 0, 1, 0).

137. [3–] Let ℓ be a prime number and write n = a0 + a1ℓ + a2ℓ
2 + · · · , with 0 ≤ ai < ℓ

for all i ≥ 0. Let κℓ(n) denote the number of sequences c = (c1, c2, . . . , cn) ∈ Nn with∑
ici = n, such that the number of permutations w ∈ Sn of type c is relatively prime

to ℓ. Show that
κℓ(n) = p(a0)

∏

i≥1

(ai + 1),

where p(a0) is the number of partitions of a0. In particular, the number of c such
that an odd number of w ∈ Sn have type c is 2b, where ⌊n/2⌋ has b 1’s in its binary
expansion.

138. [2+]* Find a simple formula for the number of alternating permutations a1a2 · · ·a2n ∈
S2n satisfying a2 < a4 < a6 < · · · < a2n.

139. [2+] An even tree is a (rooted) tree such that every vertex has an even number of
children. (Such a tree must have an odd number of vertices.) Note that these are not
plane trees, i.e., we don’t linearly order the subtrees of a vertex. Express the number
g(2n+ 1) of increasing even trees with 2n+ 1 vertices in terms of Euler numbers. Use
generating functions.

140. [3–] Define a simsun permutation to be a permutation w ∈ Sn such that w has no
proper double descents (as defined in Exercise 1.61(c)) and such that for all 0 ≤ k ≤
n− 1, if we remove n, n− 1, · · · , n− k from w (written as a word) then the resulting
permutation also has no proper double descents. For instance, w = 3241 is not simsun
since if we remove 4 from w we obtain 321, which has a proper double descent. Show
that the number of simsun permutations in Sn is equal to the Euler number En+1.

141. (a) [2+] Let En,k denote the number of alternating permutations of [n+ 1] with first
term k + 1. For instance, En,n = En. Show that

E0,0 = 1, En,0 = 0 (n ≥ 1), En+1,k+1 = En+1,k + En,n−k (n ≥ k ≥ 0). (1.139)

Note that if we place the En,k’s in the triangular array

E00

E10 → E11

E22 ← E21 ← E20

E30 → E31 → E32 → E33

E44 ← E43 ← E42 ← E41 ← E40

· · ·

(1.140)

and read the entries in the direction of the arrows from top-to-bottom (the so-
called boustrophedon or ox-plowing order), then the first number read in each row
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is 0, and each subsequent entry is the sum of the previous entry and the entry
above in the previous row. The first seven rows of the array are as follows:

1
0 → 1

1 ← 1 ← 0
0 → 1 → 2 → 2

5 ← 5 ← 4 ← 2 ← 0
0 → 5 → 10 → 14 → 16 → 16

61 ← 61 ← 56 ← 46 ← 32 ← 16 ← 0.
· · ·

(b) [3–] Define

[m,n] =

{
m, m+ n odd
n, m+ n even.

Show that ∑

m≥0

∑

n≥0

Em+n,[m,n]
xm

m!

yn

n!
=

cosx+ sin x

cos(x+ y)
. (1.141)

142. [3–] Define polynomials fn(a) for n ≥ 0 by f0(a) = 1, fn(0) = 0 if n ≥ 1, and
f ′
n(a) = fn−1(1− a). Thus

f1(a) = a

f2(a) =
1

2
(−a2 + 2a)

f3(a) =
1

3!
(−a3 + 3a)

f4(a) =
1

4!
(a4 − 4a3 + 8a)

f5(a) =
1

5!
(a5 − 10a3 + 25a)

f6(a) =
1

6!
(−a6 + 6a5 − 40a3 + 96a).

Show that
∑

n≥0 fn(1)xn = sec x+ tan x.

143. (a) [2–] Let fix(w) denote the number of fixed points (cycles of length 1) of the
permutation w ∈ Sn. Show that

∑

w∈Sn

fix(w) = n!.

Try to give a combinatorial proof, a generating function proof, and an algebraic
proof.
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(b) [3+] Let Altn (respectively, Raltn) denote the set of alternating (respectively,
reverse alternating) permutations w ∈ Sn. Define

f(n) =
∑

w∈Altn

fix(w)

g(n) =
∑

w∈Raltn

fix(w).

Show that

f(n) =

{
En −En−2 + En−4 − · · ·+ (−1)(n−1)/2E1, n odd

En − 2En−2 + 2En−4 − · · ·+ (−1)(n−2)/22E2 + (−1)n/2, n even.

g(n) =

{
En −En−2 + En−4 − · · ·+ (−1)(n−1)/2E1, n odd

En − (−1)n/2, n even.

144. (a) [2] Let

F (x) = 2
∑

n≥0

qn
∏n

j=1(1− q2j−1)
∏2n+1

j=1 (1 + qj)
,

where q =
(

1−x
1+x

)2/3
. Show that F (x) is well-defined as a formal power series.

Note that q(0) = 1 6= 0, so some special argument is needed.

(b) [3+] Let F (x) be defined by (a), and write

F (x) =
∑

n≥0

f(n)xn = 1+x+x2 +2x3 +5x4 +17x5 +72x6 +367x7 +2179x8 + · · · .

Show that f(n) is equal to the number of alternating fixed-point free involutions in
S2n, i.e., the number of permutations w ∈ S2n that are alternating permutations
and have n cycles of length two. For instance, when n = 3 we have the two
permutations 214365 and 645321, and when n = 4 we have the five permutations
21436587, 21867453, 64523187, 64827153, and 84627351.

145. [3–] Solve the following chess problem, where the condition “serieshelpmate” is defined
in Exercise 1.11(c).
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A. Karttunen, 2006KZ Z ZNsZ Z ZpZpZ Z Z OZro ZnZo lpZ ja Z Z ZZ Z Z ZZbZ Z Z
Serieshelpmate in 9: how many solutions?

146. [2+] Let fk(n) denote the number of permutations w ∈ Sn such that

D(w) = {k, 2k, 3k, . . .} ∩ [n− 1],

as in equation (1.58). Let 1 ≤ i ≤ k. Show that

∑

m≥0

fk(mk + i)
xmk+i

(mk + i)!
=

∑
m≥0(−1)m xmk+i

(mk+i)!∑
m≥0(−1)m xmk

(mk)!

.

Note that when i = k we can add 1 to both sides and obtain equation (1.59).

147. [2+] Call two permutations u, v ∈ Sn equivalent if their min-max trees M(u) and
M(v) are isomorphic as unlabelled binary trees. This notion of equivalence is clearly
an equivalence relation. Show that the number of equivalence classes is the Motzkin
number Mn−1 defined in Exercise 6.37 and further explicated in Exercise 6.38.

148. [2+] Let Φn = Φn(c, d) denote the cd-index of Sn, as defined in Theorem 1.6.3. Thus
c = a+ b and d = ab+ ba. Let S ⊆ [n− 1], and let uS be the variation of S as defined
by equation (1.60). Show that

Φn(a+ 2b, ab+ ba + 2b2) =
∑

S⊆[n−1]

α(S)uS,

where α(S) is given by equation (1.31).

149. [3–] If F (x) is any power series with noncommutative coefficients such that F (0) = 0,
then define (1− F (x))−1 to be the unique series G(x) satisfying

(1− F (x))G(x) = G(x)(1− F (x)) = 1.
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Equivalently, G(x) = 1 + F (x) + F (x)2 + · · · . Show that

∑

n≥1

Φn(c, d)
xn

n!
=

sinh(a− b)x
a− b

[
1− 1

2

(
c · sinh(a− b)x

a− b − cosh(a− b)x+ 1

)]−1

.

(1.142)
Note that the series on the right involves only even powers of a− b. Since (a− b)2 =
c2− 2d, it follows that the coefficients of this series are indeed polynomials in c and d.

150. (a) [3–]* Let f(n) (respectively, g(n)) be the total number of c’s (respectively, d’s)
that appear when we write the cd-index Φn(c, d) as a sum of monomials. For
instance, Φ4(c, d) = c3 + 2cd + 2dc, so f(4) = 7 and g(4) = 4. Show using
generating functions that f(n) = 2En+1 − (n + 1)En and g(n) = nEn −En+1.

(b) [5–] Is there a combinatorial proof?

151. [3–] Let µ be a monomial of degree n − 1 in the noncommuting variables c, d, where
deg(c) = 1 and deg(d) = 2. Show that [µ]Φn(c, d) is the number of sequences µ =
ν0, ν1, . . . , νn−1 = 1, where νi is obtained from νi−1 by removing a c or changing a d to
c. For instance, if µ = dcc there are three sequences: (dcc, ccc, cc, c, 1), (dcc, dc, cc, c, 1),
(dcc, dc, d, c, 1).

152. [3–] Continue the notation from the previous exercise. Replace each c in µ with 0, each
d with 10, and remove the final 0. We get the characteristic vector of a set Sµ ⊆ [n−2].
For instance, if µ = cd2c2d then we get the characteristic vector 01010001 of the set
Sµ = {2, 4, 8}. Show that [µ]Φn(c, d) is equal to the number of simsun permutations
(defined in Exercise 1.140) in Sn−1 with descent set Sµ.

153. (a) [2] Let f(n) denote the coefficient of dn in the cd-index Φ2n+1. Show that f(n) =
2−nE2n+1.

(b) [3] Show that f(n) is the number of permutations w of the multiset {12, 22, . . . , (n+
1)2} beginning with 1 such that between the two occurrences of i (1 ≤ i ≤ n)
there is exactly one occurrence of i+ 1. For instance, f(2) = 4, corresponding to
123123, 121323, 132312, 132132.

154. (a) [1+] Let F (x) =
∑

n≥0 f(n)xn/n!. Show that

e−xF (x) =
∑

n≥0

[∆nf(0)]xn/n!.

(b) [2] Find the unique function f : P → C satisfying f(1) = 1 and ∆nf(1) = f(n)
for all n ∈ P.

(c) [2] Generalize (a) by showing that

e−xF (x+ t) =
∑

n≥0

∑

k≥0

∆nf(k)
xn

n!

tk

k!
.
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155. (a) [1+] Let F (x) =
∑

n≥0 f(n)xn. Show that

1

1 + x
F

(
x

1 + x

)
=
∑

n≥0

[∆nf(0)]xn.

(b) [2+] Find the unique functions f, g : N→ C satisfying ∆nf(0) = g(n), ∆2ng(0) =
f(n), ∆2n+1g(0) = 0, f(0) = 1.

(c) [2+] Find the unique functions f, g : N→ C satisfying ∆nf(1) = g(n), ∆2ng(0) =
f(n), ∆2n+1g(0) = 0, f(0) = 1.

156. [2+] Let A be the abelian group of all polynomials p : Z→ C such that Dkp : Z→ Z
for all k ∈ N. (Dk denotes the kth derivative, and D0p = p.) Then A has a basis of
the form pn(x) = cn

(
x
n

)
, n ∈ N, where cn is a constant depending only on n. Find cn

explicitly.

157. [2] Let λ be a complex number (or indeterminate), and let

y = 1 +
∑

n≥1

f(n)xn, yλ =
∑

n≥0

g(n)xn.

Show that

g(n) =
1

n

n∑

k=1

[k(λ+ 1)− n]f(k)g(n− k), n ≥ 1.

This formula affords a method of computing the coefficients of yλ much more efficiently
than using (1.5) directly.

158. [2+] Let f1, f2, . . . be a sequence of complex numbers. Show that there exist unique
complex numbers a1, a2, . . . such that

F (x) := 1 +
∑

n≥1

fnx
n =

∏

i≥1

(1− xi)−ai .

Set logF (x) =
∑

n≥1 gnx
n. Find a formula for ai in terms of the gn’s. What are the

ai’s when F (x) = 1 + x and F (x) = ex/(1−x)?

159. [2] Let F (x) = 1 + a1x+ · · · ∈ K[[x]], where K is a field satisfying char(K) 6= 2. Show
that there exist unique series A(x), B(x) satisfying A(0) = B(0) = 1, A(x) = A(−x),
B(x)B(−x) = 1, and F (x) = A(x)B(x). Find simple formulas for A(x) and B(x) in
terms of F (x).

160. (a) [2] Let 0 ≤ j < k. The (k, j)-multisection of the power series F (x) =
∑

n≥0 anx
n

is defined by

Ψk,jF (x) =
∑

m≥0

akm+jx
km+j .

Let ζ = e2πi/k (where i2 = −1). Show that

Ψk,jF (x) =
1

k

k−1∑

r=0

ζ−jrF (ζrx).
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(b) [2] As a simple application of (a), let 0 ≤ j < k, and let f(n, k, j) be the number of
permutations w ∈ Sn satisfying maj(w) ≡ j (mod k). Show that f(n, k, j) = n!/k
if n ≥ k.

(c) [2+] Show that

f(k − 1, k, 0) =
(k − 1)!

k
+
∑

ζ

1

(1− ξ)k−1
,

where ξ ranges over all primitive kth roots of unity. Can this expression be
simplified?

161. (a) [2]* Let F (x) = a0 + a1x + · · · ∈ K[[x]], with a0 = 1. For k ≥ 2 define Fk(x) =
Φk,0(x) =

∑
m≥0 akmx

km. Show that for n ≥ 1,

[xkm]
F (x)

Φk,0F (x)
= 0.

(b) [2+] Let charK 6= 2. Given G(x) = 1 + H(x) where H(−x) = −H(x) (i.e.,
H(x) has only odd exponents), find the general solution F (x) = 1 + a1x + · · ·
to F (x)/F2(x) = G(x). Express your answer in the form F (x) = Φ(G(x))E(x),
where Φ(x) is a function independent from G(x), and where E(x) ranges over
some class E of power series, also independent from G(x).

162. [3–] Let g(x) ∈ C[[x]], g(0) = 0, g(x) = g(−x). Find all power series f(x) such that
f(0) = 0 and

f(x) + f(−x)
1− f(x)f(−x) = g(x).

Express your answer as an explicit algebraic function of g(x) and a power series h(x)
(independent from g(x)) taken from some class of power series.

163. Let f(x) ∈ C[[x]], f(x) = x+ higher order terms. We say that F (x, y) ∈ C[[x, y]] is a
formal group law or addition law for f(x) if f(x+ y) = F (f(x), f(y)).

(a) [2–] Show that for every f(x) ∈ C[[x]] with f(x) = x + · · · , there is a unique
F (x, y) ∈ C[[x, y]] which is a formal group law for f(x).

(b) [3] Show that F (x, y) is a formal group law if and only if F (x, y) = x+ y+ higher
order terms, and

F (F (x, y), z) = F (x, F (y, z)).

(c) [2] Find f(x) so that F (x, y) is a formal group law for f(x) in the following cases:

• F (x, y) = x+ y

• F (x, y) = x+ y + xy

• F (x, y) = (x+ y)/(1− xy)
• F (x, y) = x

√
1− y2 + y

√
1− x2
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(d) [2+] Using equation (5.128), show that the formal group law for f(x) = xe−x is
given by

F (x, y) = x+ y −
∑

n≥1

(n− 1)n−1x
ny + xyn

n!
,

where we interpret 00 = 1 in the summand indexed by n = 1.

(e) [3] Find the formal group law for the function

f(x) =

∫ x

0

dt√
1− t4

.

164. [3–] Solve the following equation for the power series F (x, y) ∈ C[[x, y]]:

(xy2 + x− y)F (x, y) = xF (x, 0)− y.

The point is to make sure that your solution has a power series expansion at (0, 0).

165. [2+] Find a simple description of the coefficients of the power series F (x) = x+ · · · ∈
C[[x]] satisfying the functional equation

F (x) = (1 + x)F (x2) +
x

1− x2
.

166. [2] Let n ∈ P. Find a power series F (x) ∈ C[[x]] satisfying F (F (x))n = 1 + F (x)n,
F (0) = 1.

167. [2] Let F (x) ∈ C[[x]]. Find a simple expression for the exponential generating function
of the derivatives of F (x), i.e., ∑

n≥0

DnF (x)
tn

n!
, (1.143)

where D = d/dx.

168. Let K be a field satisfying char(K) 6= 2. If A(x) = x +
∑

n≥2 anx
n ∈ K[[x]], then let

A〈−1〉(x) denote the compositional inverse of A; that is, A〈−1〉(A(x)) = A(A〈−1〉(x)) = x.

(a) [3–] Show that we can specify a2, a4, . . . arbitrarily, and they then determine
uniquely a3, a5, . . . so that A(−A(−x)) = x. For instance

a3 = a2
2

a5 = 3a4a2 − 2a4
2

a7 = 13a6
2 − 18a4a

3
2 + 2a2

4 + 4a2a6.

Note. Let E(x) = A(−x). Then the conditions A(x) = x+· · · andA(−A(−x)) =
x are equivalent to E(x) = −x+ · · · and E(E(x)) = x.

(b) [5–] What are the coefficients when a2n+1 is written as a polynomial in a2, a4, . . .
as in (a)?
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(c) [2+]* Show that A(−A(−x)) = x if and only if there is a B(x) = x+
∑

n≥2 bnx
n

such that A(x) = B〈−1〉(−B(−x)).
(d) [2+] Show that if A(−A(−x)) = x, then there is a unique B(x) as in (c) of the

form B(x) = x+
∑

n≥1 b2nx
2n. For instance,

b2 = −1

2
a2

b4 =
1

8

(
5a3

2 − 4a4

)

b6 = − 1

16

(
49a5

2 − 56a2
2a4 + 8a6

)
.

(e) [5–] What are the coefficients when b2n is written as a polynomial in a2, a4, . . . as
in (d)?

(f) [2+] For any C(x) = x+c2x
2 +c3x

3 + · · · , show that there are unique power series

A(x) = x+ a2x
2 + a3x

3 + · · ·
D(x) = x+ d3x

3 + d5x
5 + · · ·

such that A(−A(−x)) = x and C(x) = D(A(x)). For instance,

a2 = c2

d3 = c3 − c22
a4 = c4 − 3c3c2 + 3c32
d5 = c5 + 3c22c3 − 3c2c4 − c42.

(g) [2+] Find A(x) and D(x) as in (f) when C(x) = − log(1− x).
(h) [5–] What are the coefficients when a2n and d2n+1 are written as a polynomial in

c2, c3, . . . as in (f)?

(i) [2+] Note that if A(x) = x/(1 + 2x), then A(−A(−x)) = x. Show that

B〈−1〉(−B(−x)) = x/(1 + 2x)

if and only if e−x
∑

n≥0 bn+1x
n/n! is an even function of x (i.e., has only even

exponents).

(j) [2+] Identify the coefficients b2n of the unique B(x) = x+
∑

n≥1 b2nx
2n satisfying

B〈−1〉(−B(−x)) = x/(1 + 2x).

169. [2] Find a closed-form expression for the following generating functions.

(a)
∑

n≥0

(n + 2)2xn

(b)
∑

n≥0

(n + 2)2x
n

n!
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(c)
∑

n≥0

(n + 2)2

(
2n

n

)
xn

170. (a) [2–] Given a0 = α, a1 = β, an+1 = an + an−1 for n ≥ 1, compute y =
∑

n≥0 anx
n.

(b) [2+] Given a0 = 1 and an+1 = (n + 1)an −
(
n
2

)
an−2 for n ≥ 0, compute y =∑

n≥0 anx
n/n!.

(c) [2] Given a0 = 1 and 2an+1 =
∑n

i=0

(
n
i

)
aian−i for n ≥ 0, compute

∑
n≥0 anx

n/n!
and find an explicitly. Compare equation (1.55), where (in the notation of the
present exercise), a1 = 1 and the recurrence holds for n ≥ 1.

(d) [3] Let ak(0) = δ0k, and for 1 ≤ k ≤ n + 1 let

ak(n+ 1) =
n∑

j=0

(
n

j

) ∑

2r+s=k−1
r,s≥0

(a2r(j) + a2r+1(j))as(n− j).

Compute A(x, t) :=
∑

k,n≥0 ak(n)tkxn/n!.

171. Given a sequence a0, a1, . . . of complex numbers, let bn = a0 + a1 + · · ·+ an.

(a) [1+]* Let A(x) =
∑

n≥0 anx
n and B(x) =

∑
n≥0 bnx

n. Show that

B(x) =
A(x)

1− x.

(b) [2+] Let A(x) =
∑

n≥0 an
xn

n!
and B(x) =

∑
n≥0 bn

xn

n!
. Show that

B(x) =
(
I(e−xA′(x)) + a0

)
ex, (1.144)

where I denotes the formal integral, i.e.,

I

(∑

n≥0

cnx
n

)
=
∑

n≥0

cn
xn+1

n + 1
=
∑

n≥1

cn−1
xn

n
.

172. [3–] The Legendre polynomial Pn(x) is defined by

1√
1− 2xt+ t2

=
∑

n≥0

Pn(x)t
n.

Show that (1− x)nPn((1 + x)/(1− x)) =
∑n

k=0

(
n
k

)2
xk.

173. [2+] Find simple closed expressions for the coefficients of the power series (expanded
about x = 0):

(a)

√
1 + x

1− x
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(b) 2
(
sin−1 x

2

)2

(c) sin(t sin−1 x)

(d) cos(t sin−1 x)

(e) sin(x) sinh(x)

(f) sin(x) sin(ωx) sin(ω2x), where ω = e2πi/3

(g) cos(log(1 + x)) (express the answer as the real part of a complex number)

174. [1–] Find the order (number of elements) of the finite field F2.

175. [2+]* For i, j ≥ 0 and n ≥ 1, let fn(i, j) denote the number of pairs (V,W ) of subspaces
of Fnq such that dimV = i, dimW = j, and V ∩W = {0}. Find a formula for fn(i, j)
which is a power of q times a q-multinomial coefficient.

176. [2+] A sequence of vectors v1, v2, . . . is chosen uniformly and independently from Fnq .
Let E(n) be the expected value of k for which v1, . . . , vk span Fnq but v1, . . . , vk−1 don’t
span Fnq . For instance

E(1) =
q

q − 1

E(2) =
q(2q + 1)

(q − 1)(q + 1)

E(3) =
q(3q3 + 4q2 + 3q + 1)

(q − 1)(q + 1)(q2 + q + 1)
.

Show that

E(n) =
n∑

i=1

qi

qi − 1
.

177. (a) [2+]* Let f(n, q) denote the number of matrices A ∈ Mat(n, q) satisfying A2 = 0.
Show that

f(n, q) =
∑

2i+j=n

γn(q)

qi(i+2j)γi(q)γj(q)
,

where γm(q) = #GL(m, q). (The sum ranges over all pairs (i, j) ∈ N×N satisfying
2i+ j = n.)

(b) [2]* Write f(n, q) = g(n, q)(q − 1)k so that g(n, 1) 6= 0,∞. Thus f(n, q) may be
regarded as a q-analogue of g(n, 1). Show that

∑

n≥0

g(n, 1)
xn

n!
= ex

2+x.

(c) [5–] Is there an intuitive explanation of why f(n, q) is a “good” q-analogue of
g(n, 1)?
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178. [2+]* Let f(n) be the number of pairs (A,B) of matrices in Mat(n, q) satisfying AB =
0. Show that

f(n) =
n∑

k=0

qn(n−k)
(

n

k

)
(qn − 1)(qn − q) · · · (qn − qn−1).

179. [2–]* How many pairs (A,B) of matrices in Mat(n, q) satisfy A +B = AB?

180. [5–] How many matrices A ∈ Mat(n, q) have square roots, i.e., A = B2 for some
B ∈ Mat(n, q)? The q = 1 situation is Exercise 5.11(a).

181. [2]* Find a simple formula for the number f(n) of matrices A = (Aij) ∈ GL(n, q) such
that A11 = A1n = An1 = Ann = 0.

182. [2+] Let f(n, q) denote the number of matrices A = (Aij) ∈ GL(n, q) such that Aij 6= 0
for all i, j. Let g(n, q) denote the number of matrices B = (Bij) ∈ GL(n − 1, q) such
that Bij 6= 1 for all i, j. Show that

f(n, q) = (q − 1)2n−1g(n, q).

183. [2] Prove the identity
1

1− qx =
∏

d≥1

(
1− xd

)−β(d)
, (1.145)

where β(d) is given by equation (1.103).

184. (a) [2]* Let fq(n) denote the number of monic polynomials f(x) of degree n over Fq
that do not have a zero in Fq, i.e., for all α ∈ Fq we have f(α) 6= 0. Find a simple
formula for F (x) =

∑
n≥0 fq(n)xn. Your answer should not involve any infinite

sums or products.

Note. The constant polynomials f(x) = β for 0 6= β ∈ Fq are included in the
enumeration, but not the polynomial f(x) = 0.

(b) [2]* Use (a) to find a simple explicit formula for f(n, q) when n is sufficiently large
(depending on q).

185. (a) [1]* Show that the number of monic polynomials of degree n over Fq is qn.

(b) [2+] Recall that the discriminant of a polynomial f(x) = (x − θ1) · · · (x − θn) is
defined by

disc(f) =
∏

1≤i<j≤n
(θi − θj)2.

Show that the number D(n, 0) of monic polynomials f(x) over Fq with discrimi-
nant 0 (equivalently, f(x) has an irreducible factor of multiplicity greater than 1)
is qn−1, n ≥ 2.
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(c) [2+] Generalize (a) and (b) as follows. Fix k ≥ 1, and let X be any subset
of Nk containing (0, 0, . . . , 0). If f1, . . . , fk is a sequence of monic polynomials
over Fq, then set f = (f1, . . . , fk) and deg(f) = (deg(f1), . . . , deg(fk)). Given
an irreducible polynomial p ∈ Fq[x], let mult(p, f) = (µ1, . . . , µk), where µi is
the multiplicity of p in fi. Given β ∈ Nk, let N(β) be the number of k-tuples
f = (f1, . . . , fk) of monic polynomials over Fq such that deg(f) = β and such
that for any irreducible polynomial p over Fq we have mult(p, f) ∈ X. By a
straightforward generalization of Exercise 1.158 to the multivariate case, there
are unique aα ∈ Z such that

FX(x) :=
∑

α∈X
xα =

∏

α∈Nk

α6=(0,0,...,0)

(1− xα)aα , (1.146)

where if α = (α1, . . . , αk) then xα = xα1
1 · · ·xαk

k . Show that

∑

β∈Nk

N(β)xβ =
∏

α∈Nk

α6=(0,0,...,0)

(1− qxα)aα .

Note that if k = 1 andX = N, thenN(β) is the total number of monic polynomials
of degree β. We have fN(x) = 1/(1 − x) and

∑
β∈N N(β)xβ = 1/(1 − qx) =∑

n≥0 q
nxn, agreeing with (a).

186. Deduce from Exercise 1.185(c) the following results.

(a) [2] The number Nr(n) of monic polynomials f ∈ Fq[x] of degree n with no factor
of multiplicity at least r is given by

Nr(n) = qn − qn−r+1, n ≥ r. (1.147)

Note that the case r = 2 is equivalent to (b)

(b) [2] Let N(m,n) be the number of pairs (f, g) of monic relatively prime polynomials
over Fq of degrees m and n. In other words, f and g have nonzero resultant. Then

N(m,n) = qm+n−1, m, n ≥ 1. (1.148)

(c) [2+] A polynomial f over a field K is powerful if every irreducible factor of f
occurs with multiplicity at least two. Let P (n) be the number of powerful monic
polynomials of degree n over Fq. Show that

P (n) = q⌊n/2⌋ + q⌊n/2⌋−1 − q⌊(n−1)/3⌋, n ≥ 2. (1.149)

187. (a) [3–] Let q be an odd prime power. Show that as f ranges over all monic polyno-
mials of degree n > 1 over Fq, disc(f) is just as often a nonzero square in Fq as a
nonsquare.
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(b) [2+] For n > 1 and a ∈ Fq, let D(n, a) denote the number of monic polynomials
of degree n over Fq with discriminant a. Thus by Exercise 1.185(b) we have
D(n, 0) = qn−1. Show that if (n(n−1), q−1) = 1 (so q = 2m) or (n(n−1), q−1) = 2
(so q is odd) then D(n, a) = qn−1 for all a ∈ Fq. (Here (r, s) denotes the greatest
common divisor of r and s.)

(c) [5–] Investigate further the function D(n, a) for general n and a.

188. [3] Give a direct proof of Corollary 1.10.11, i.e., the number of nilpotent matrices in
Mat(n, q) is qn(n−1).

189. [3–] Let V be an (m + n)-dimensional vector space over Fq, and let V = V1 ⊕ V2,
where dim V1 = m and dimV2 = n. Let f(m,n) be the number of nilpotent linear
transformations A : V → V satisfying A(V1) ⊆ V2 and A(V2) ⊆ V1. Show that

f(m,n) = qm(n−1)+n(m−1)(qm + qn − 1),

190. (a) [2] Let ω∗(n, q) denote the number of conjugacy classes in the group GL(n, q).
Show that ω∗(n, q) is a polynomial in q satisfying ω∗(n, 1) = 0. For instance,

ω∗(1, q) = q − 1

ω∗(2, q) = q2 − 1

ω∗(3, q) = q3 − q
ω∗(4, q) = q4 − q
ω∗(5, q) = q5 − q2 − q + 1

ω∗(6, q) = q6 − q2

ω∗(7, q) = q7 − q3 − q2 + 1

ω∗(8, q) = q8 − q3 − q2 + q.

(b) [2+] Show that

ω∗(n, q) = qn − q⌊(n−1)/2⌋ +O(q⌊(n−1)/2⌋−1).

(c) [3–] Evaluate the polynomial values ω∗(n, 0) and ω∗(n,−1). When is ω∗(n, q)
divisible by q2?

191. [3–] Give a more conceptual proof of Proposition 1.10.2, i.e., the number ω(n, q) of
orbits of GL(n, q) acting adjointly on Mat(n, q) is given by

ω(n, q) =
∑

j

pj(n)qj.

192. (a) [2]* Find a simple formula for the number of surjective linear transformations
A : Fnq → Fkq .
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(b) [2]* Show that the number of m× n matrices of rank k over Fq is given by

(
m

k

)
(qn − 1)(qn − q) · · · (qn − qk−1).

193. [2] Let pn denote the number of projections P ∈ Mat(n, q), i.e., P 2 = P . Show that

∑

n≥0

pn
xn

γn
=

(∑

k≥0

xk

γ(k)

)2

,

where as usual γ(k) = γ(k, q) = #GL(k, q).

194. [2+] Let rn denote the number of regular (or cyclic) M ∈ Mat(n, q), i.e., the charac-
teristic and minimal polynomials of A are the same. Equivalently, there is a column
vector v ∈ Fnq such that the set {Aiv : i ≥ 0} spans Fnq (where we set A0 = I). Show
that

∑

n≥0

rn
xn

γ(n)
=

∏

d≥1

(
1 +

xd

(qd − 1)(1− (x/q)d)

)β(d)

=
1

1− x
∏

d≥1

(
1 +

xd

qd(qd − 1)

)β(d)

.

195. [2] A matrix A is semisimple if it can be diagonalized over the algebraic closure of the
base field. Let sn denote the number of semisimple matrices A ∈ Mat(n, q). Show that

∑

n≥0

sn
xn

γ(n, q)
=
∏

d≥1

(∑

j≥0

xjd

γ(j, qd)

)β(d)

.

196. (a) [2+] Generalize Proposition 1.10.15 as follows. Let 0 ≤ k ≤ n, and let fk(n) be
the number of matrices A = (aij) ∈ GL(n, q) satisfying a11 + a22 + · · ·+ akk = 0.
Then

fk(n) =
1

q

(
γ(n, q) + (−1)k(q − 1)q

1
2
k(2n−k−1)γ(n− k, q)

)
. (1.150)

(b) [2+] Let H be any linear hyperplane in the vector space Mat(n, q). Find (in terms
of certain data about H) a formula for #(GL(n, q) ∩H).

197. [3] Let f(n) be the number of matrices A ∈ GL(n, q) with zero diagonal (i.e., all
diagonal entries are equal to 0). Show that

f(n) = q(
n−1

2 )−1(q − 1)n
n∑

i=0

(−1)i
(
n

i

)
(n − i)!.
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For instance,

f(1) = 0

f(2) = (q − 1)2

f(3) = q(q − 1)(q4 − 4q2 + 4q − 1)

f(4) = q3(q − 1)(q8 − q6 − 5q5 + 3q4 + 11q3 − 14q2 + 6q − 1).

198. (a) [2+] Let h(n, r) denote the number of n × n symmetric matrices of rank r over
Fq. Show that

h(n+1, r) = qrh(n, r)+ (q−1)qr−1h(n, r−1)+ (qn+1− qr−1)h(n, r−2), (1.151)

with the initial conditions h(n, 0) = 1 and h(n, r) = 0 for r > n.

(b) [2] Deduce that

h(n, r) =





s∏

i=1

q2i

q2i − 1
·

2s−1∏

i=0

(qn−i − 1), 0 ≤ r = 2s ≤ n

s∏

i=1

q2i

q2i − 1
·

2s∏

i=0

(qn−i − 1), 0 ≤ r = 2s+ 1 ≤ n.

In particular, the number h(n, n) of n× n invertible symmetric matrices over Fq
is given by

h(n, n) =

{
qm(m−1)(q − 1)(q3 − 1) · · · (q2m−1), n = 2m− 1

qm(m+1)(q − 1)(q3 − 1) · · · (q2m−1), n = 2m.

199. (a) [3] Show that the following three numbers are equal:

• The number of symmetric matrices in GL(2n, q) with zero diagonal.

• The number of symmetric matrices in GL(2n− 1, q).

• The number of skew-symmetric matrices (A = −At) in GL(2n, q).

(b) [5] Give a combinatorial proof of (a). (No combinatorial proof is known that two
of these items are equal.)

200. [3] Let Cn(q) denote the number of n×n upper-triangular matrices X over Fq satisfying
X2 = 0. Show that

C2n(q) =
∑

j

[(
2n

n− 3j

)
−
(

2n

n− 3j − 1

)]
· qn2−3j2−j

C2n+1(q) =
∑

j

[(
2n + 1

n− 3j

)
−
(

2n + 1

n− 3j − 1

)]
· qn2+n−3j2−2j .

201. This exercise and the next show that simply-stated counting problems over Fq can have
complicated solutions beyond the realm of combinatorics. (See also Exercise 4.39(a).)
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(a) [3] Let
f(q) = #{(x, y, z) ∈ F3

q : x+ y + z = 0, xyz = 1}.
Show that f(q) = q + a− 2, where:

• if q ≡ 2 (mod 3) then a = 0,

• if q ≡ 1 (mod 3) then a is the unique integer such that a ≡ 1 (mod 3) and
a2 + 27b2 = 4q for some integer b.

(b) [2+] Let
g(q) = #{A ∈ GL(3, q) : tr(A) = 0, det(A) = 1.}

Express g(q) in terms of the function f(q) of part (a).

202. [4–] Let p be a prime, and let Np denote the number of solutions modulo p to the
equation y2 + y = x3 − x. Let ap = p − Np. For instance, a2 = −2, a3 = 1, a5 = 1,
a7 = −2, etc. Show that if p 6= 11, then

ap = [xp]x
∏

n≥1

(1− xn)2(1− x11n)2

= [xp](x− 2x2 − x3 + 2x4 + x5 + 2x6 − 2x7 − 2x9 + · · · .)

203. [3] The following quotation is from Plutarch’s Table-Talk VIII. 9, 732: “Chrysippus
says that the number of compound propositions that can be made from only ten simple
propositions exceeds a million. (Hipparchus, to be sure, refuted this by showing that
on the affirmative side there are 103,049 compound statements, and on the negative
side 310,952.)”

According to T. L. Heath, A History of Greek Mathematics, vol. 2, p. 245, “it seems
impossible to make anything of these figures.”

Can in fact any sense be made of Plutarch’s statement?
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