學號: _____

Quiz 2

考試日期: 2021/09/30

1. 請框出答案. 2. 不可使用手機、計算器,禁止作弊! 3. 請自備白紙書寫,作答完畢請拍照上傳 Googld Classroom

4. 照片請清晰並轉正

1. Find all possible scalar r such that the matrix A commutes with matrix B.

$$A = \begin{bmatrix} r & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Answer: r = 3.

$$AB = \begin{bmatrix} r & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} r & 0 & r \\ 0 & 1 & 0 \\ 3 & 0 & 3 \end{bmatrix}$$

$$BA = \begin{bmatrix} r & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} r & 0 & 3 \\ 0 & 1 & 0 \\ r & 0 & 3 \end{bmatrix}$$

Therefore,AB = BA if and only if r = 3.

2. For vectors \vec{v} and \vec{w} in \mathbb{R}^n , prove that $\vec{v} - \vec{w}$ and $\vec{v} + \vec{w}$ are perpendicular if and only if $\|\vec{v}\| = \|\vec{w}\|$

Solution:

 $\overrightarrow{v} - \overrightarrow{w}$ and $\overrightarrow{v} + \overrightarrow{w}$ are perpendicular means $(\overrightarrow{v} - \overrightarrow{w}) \cdot (\overrightarrow{v} + \overrightarrow{w}) = (\overrightarrow{v} + \overrightarrow{w}) \cdot (\overrightarrow{v} - \overrightarrow{w}) = 0$. Then

$$0 = (\overrightarrow{v} - \overrightarrow{w}) \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{v} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} - \overrightarrow{w} \cdot \overrightarrow{v} - \overrightarrow{w} \cdot \overrightarrow{w} = \overrightarrow{v} \cdot \overrightarrow{v} - \overrightarrow{w} \cdot \overrightarrow{w} = \|\overrightarrow{v}\|^2 - \|\overrightarrow{w}\|^2$$

Since $\|\vec{v}\|$ and $\|\vec{w}\|$ are both non-negative, we know $\|\vec{v}\|^2 = \|\vec{w}\|^2$ if and only if $\|\vec{v}\| = \|\vec{w}\|$.