姓名: SOLUTION

學號:

Quiz 13

考試日期: 2022/12/20

不可使用手機、計算器,禁止作弊!

- 1. Let A be a 3×3 matrix with row vectors $\vec{a}, \vec{b}, \vec{c}$ and with determinant equal to 8. Find the determinant of the following matrices.
 - (a) Let B is the matrix having row vectors $\vec{a} + 5\vec{b}, 3\vec{a} + 5\vec{b} 2\vec{c}, \vec{b}$. $det(B) = \underline{16}$.
 - (b) Let C is the matrix having row vectors $\vec{a} + \vec{a}$, $\vec{b} + \vec{c}$, $\vec{a} + \vec{c}$. det $(C) = \underline{16}$.
 - (c) Let *D* is A^{-1} . det(*D*)= 1/8 .
 - (d) Let E is A^T . det $(EA) = \underline{64}$.
 - (e) Let *F* is 5*A*. det(*F*)= $5^3 \times 8 = 1000$.

Solution :

Let's present the matrices graphically.

$$A = \begin{bmatrix} - & \vec{a} & - \\ - & \vec{b} & - \\ - & \vec{b} & - \end{bmatrix}, B = \begin{bmatrix} - & \vec{a} + 5\vec{b} & - \\ - & 3\vec{a} + 5\vec{b} - 2\vec{c} & - \\ - & \vec{b} & - \end{bmatrix}, C = \begin{bmatrix} - & \vec{a} + \vec{a} & - \\ - & \vec{b} + \vec{c} & - \\ - & \vec{a} + \vec{c} & - \end{bmatrix}$$

By the Property 1, Property 2, Property 3, Property 4 and Property 5 in Section 4-3

$$det(B) = det(\begin{bmatrix} - & \vec{a} + 5\vec{b} & - \\ - & 3\vec{a} + 5\vec{b} - 2\vec{c} & - \\ - & \vec{b} & - \end{bmatrix})$$

$$= det(\begin{bmatrix} - & \vec{a} & - \\ - & 3\vec{a} + 5\vec{b} - 2\vec{c} & - \\ - & - & \vec{b} & - \end{bmatrix})$$

$$= det(\begin{bmatrix} - & \vec{a} & - \\ - & \vec{a} - 2\vec{c} & - \\ - & - & - & - \end{bmatrix})$$

$$= det(\begin{bmatrix} - & \vec{a} & - \\ - & -2\vec{c} & - \\ - & - & - & - \end{bmatrix})$$

$$= -2 det(\begin{bmatrix} - & \vec{a} & - \\ - & -2\vec{c} & - \\ - & - & - & - \end{bmatrix})$$

$$= 2 det(\begin{bmatrix} - & \vec{a} & - \\ - & \vec{c} & - \\ - & - & - & - \end{bmatrix})$$

$$= 2 det(\begin{bmatrix} - & \vec{a} & - \\ - & \vec{c} & - \\ - & - & - & - & - \end{bmatrix})$$

$$= 2 det(A) = 2 * 8 = 16$$

$$(R_1 \to R_1 - 5R_1)$$

$$(R_1 \to R_1 - 5R_1)$$

$$(R_2 \to R_2 - 5R_3)$$

$$(R_2 \to R_2 - R_1)$$

$$(R_2 \to -R_1)$$

$$(R_2 \to R_2)$$

Quiz 13

$$det(C) = det\left(\begin{bmatrix} - & \vec{a} + \vec{a} & - \\ - & \vec{b} + \vec{c} & - \\ - & \vec{a} + \vec{c} & - \end{bmatrix}\right)$$

$$= det\left(\begin{bmatrix} - & 2\vec{a} & - \\ - & \vec{b} + \vec{c} & - \\ - & \vec{a} + \vec{c} & - \end{bmatrix}\right)$$

$$= 2 det\left(\begin{bmatrix} - & \vec{a} & - \\ - & \vec{b} + \vec{c} & - \\ - & \vec{a} + \vec{c} & - \end{bmatrix}\right)$$

$$= 2 det\left(\begin{bmatrix} - & \vec{a} & - \\ - & \vec{b} + \vec{c} & - \\ - & \vec{c} & - \end{bmatrix}\right)$$

$$= 2 det\left(\begin{bmatrix} - & \vec{a} & - \\ - & \vec{b} + \vec{c} & - \\ - & \vec{c} & - \end{bmatrix}\right)$$

$$= 2 det\left(\begin{bmatrix} - & \vec{a} & - \\ - & \vec{b} + \vec{c} & - \\ - & \vec{c} & - \end{bmatrix}\right)$$

$$= 2 det\left(\begin{bmatrix} - & \vec{a} & - \\ - & \vec{b} & - \\ - & \vec{c} & - \end{bmatrix}\right)$$

$$= 2 det(A) = 2 * 8 = 16$$

2. Find the value of λ for the given matrix is singular.

$$\begin{bmatrix} 2-\lambda & 3\\ 1 & \lambda \end{bmatrix}$$

Answer: $\lambda = (1 + \sqrt{2}i), (1 - \sqrt{2}i)$ or "no real solution"

Solution:

Since A is invertible, then A^{-1} exists and by Theorem 4.3 in Section 4-3:

A square matrix A is invertible if and only if $det(A) \neq 0$.

Since the matrix is singular, we have

$$0 = \det\left(\begin{bmatrix} 2-\lambda & 3\\ 1 & \lambda \end{bmatrix}\right) = (2-\lambda)\lambda - 3 \times 1 = -\lambda^2 + 2\lambda - 3$$

It is easy to find that $\lambda = (1 + \sqrt{2}i)$, $(1 - \sqrt{2}i)$ are the only two solution. Therefore, the given matrix is singular only if $\lambda = (1 + \sqrt{2}i)$, $(1 - \sqrt{2}i)$.