Quiz 2

學號:

考試日期: 2022/09/20

1. 請框出答案. 2. 不可使用手機、計算器,禁止作弊!

1. Compute the indicated quantity (B), if it is defined.

$A = \begin{bmatrix} 4 & 1 & -2 \\ 1 & -1 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 4 & 2 \end{bmatrix}, C = \begin{bmatrix} 2 & -1 \\ 0 & 3 \\ -1 & 2 \end{bmatrix}$	
(a) $(2A)(-B) = $ <u>undefin</u>	<u>ed</u> . (b) $(2A)(-C) = \begin{bmatrix} -20 & 10 \\ 2 & -4 \end{bmatrix}$.
<pre>octave:1> A=[4 1 -2; 1 -1 3] A =</pre>	
4 1 -2 1 -1 3	
<pre>octave:2> B=[2 0 3;-1 4 2] B =</pre>	
2 0 3 -1 4 2	
<pre>octave:3> C=[2 -1; 0 3; -1 2] C =</pre>	<pre>octave:4> (2*A)*(-B) error: operator *: nonconformant arguments (op1 is 2x3, op2 is 2x3) octave:5> (2*A)*(-C) arguments =</pre>
2 -1 0 3 -1 2	ans = -20 10 2 -4

2. Write down the expression for the (i,j) element of AB in terms of only the elements of matrices A and B.

Given A is a $m \times n$ matrix, written as $[a_{ij}]_{m \times n}$, and B is a $n \times s$ matrix, written as $[b_{ij}]_{n \times s}$. Then C = AB is a $m \times s$ matrix, written as $[c_{ij}]_{m \times s}$.

The (i,j) element of AB is c_{ij} , where

$$c_{ij} = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Circle each of the following True or False and then give a counterexample (反例) for the false statement.

3. True **False** The magnitude of $\vec{v} + \vec{w}$ must be at least as large as the magnitude of either \vec{v} or \vec{w} in \mathbb{R}^n .

Let $\vec{v} = [1, 0], \ \vec{w} = [-1, 0], \ \text{then } \|\vec{v} + \vec{w}\| = 0 < 1 = \|\vec{v}\| = \|\vec{w}\|$

4. True **False** There are exactly two unit vectors perpendicular ($\underline{\pm}\underline{a}$) to any given nonzero vectors in \mathbb{R}^n .

For n = 3, $\vec{e}_1 = [1, 0, 0]$ is perpendicular to every vector in $S = sp(\vec{e}_2, \vec{e}_3) = sp([0, 1, 0], [0, 0, 1])$.

5. True **False** The dot product od a vector with itself yields the magnitude of the vector.

Should be the "SQUARE" of the magnitude of the vector.