姓名: SOLUTION

Quiz 6

考試日期: 2022/10/18

學號:

不可使用手機、計算器,禁止作弊!

- 1. Let the subspace W = sp([1, -3, 2], [2, 1, 3], [4, 9, 5]) in \mathbb{R}^3 .
 - (a) Find dim(W).
 - (b) Find a basis for W.
 - (c) Is dim(W) = 3? If not, enlarge the basis you get in (b) to be a basis for \mathbb{R}^3 .

Answer:

Let $A = \begin{bmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ -3 & 1 & 9 & 0 & 1 & 0 \\ 2 & 3 & 5 & 0 & 0 & 1 \end{bmatrix}$, and $H = rref(A) = \begin{bmatrix} 1 & 0 & -2 & 0 & -3/11 & 1/11 \\ 0 & 1 & 3 & 0 & 2/11 & 3/11 \\ 0 & 0 & 0 & 1 & -1/11 & -7/11 \end{bmatrix}$

Since the pivots are in the 1^{st} , 2^{nd} and 4^{th} column of H, we have:

- 1. The dim(W) = 2.
- 2. A basis for W is $\{[1, -3, 2], [2, 1, 3]\}$.
- 3. A requested basis for \mathbb{R}^3 is $\{[1, -3, 2], [2, 1, 3], [1, 0, 0]\}$.

Circle each of the following True or False and then give a counterexample (反例) for the false statement.

2. **True** False If a subset of two vectors in \mathbb{R}^2 spans \mathbb{R}^2 , then the subset is linearly independent.

3. True **False** Every independent subsets of \mathbb{R}^n is a subset of every basis for \mathbb{R}^n .

For n = 3, $\{[1, 0, 0], [0, 2, 0]\}$ is a linearly independent subset of \mathbb{R}^3 . $\{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}$ is a basis for \mathbb{R}^3 . However, $\{[1, 0, 0], [0, 2, 0]\}$ is not a subset of $\{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}$.

4. True **False** If a linear system $A\vec{x} = \vec{0}$ has only the trivial solution, then $A\vec{x} = \vec{b}$ has a unique solution for every column vector \vec{b} with the appropriate number of components.

Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}, \ rref(A) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Hence $A\vec{x} = \vec{0}$ has only the trivial solution, but $A\vec{x} = \vec{b}$ has NO solution when

$$\vec{b} = \begin{bmatrix} 0\\2\\4 \end{bmatrix}$$