姓名:	4市 33	葉均承	應數一線性代數
學號:	練習		考試日期: —

不可使用手機、計算器,禁止作弊!

1. Let F bet he set of all real-valued functions on a (nonempty) set S; that is, let F be the set of all functions mapping S into \mathbb{R} . For $f, g \in F$, let the sum $f \oplus g$ of two functions f and g in F, and for any scalar r, let scalar multiplication be defined below. Is this set a vector space?

 $(f \oplus g)(x) = 2f(x) + 2g(x)$ for all $x \in S$ $(r \otimes f)(x) = rf(x) - r$ for all $x \in S$

- b. What is the zero vector in this vector space? **Answer:** the zero vector is ______, for any functions f, the -f is ______

- 2. Consider the set \mathbb{R}^2 , with the addition defined by $[x, y] \oplus [a, b] = [x + a + 1, y + b]$, and with scalar multiplication defined by $r \otimes [x, y] = [rx + r 1, ry]$.

 - b. What is the zero vector in this vector space? *Hint:* The zero vector will NOT be the vector [0, 0].

Answer: the zero vector is _____, for any vectors [x,y], the -[x,y] is _____