姓名: SOLUTION

Quiz 8

葉均承 應數一線性代數

學號:

考試日期: 2023/04/12

不可使用手機、計算器,禁止作弊!

1. Find the lease squares solution of the given overdetermined system $A\vec{x} = \vec{b}$.

$$\begin{bmatrix} 3 & 1 \\ 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

0.6

Answer: the lease squares solution is

Solution :

Method1

Let

$$A = \begin{bmatrix} 3 & 1\\ 1 & 2\\ 2 & -1 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} 1\\ 0\\ -2 \end{bmatrix}$$

Then the lease squares solution $\vec{x}' = (A^T A)^{-1} A^T \vec{b} = \begin{bmatrix} -0.2\\ 0.6 \end{bmatrix}$

Check

Let
$$\vec{v} = A\vec{x}' - \vec{b} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
, $\vec{a}_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ and $\vec{a}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$. Then $\vec{a}_1 \cdot \vec{v} = \vec{a}_2 \cdot \vec{v} = 0$.

Method2

The problem can be written as:

Given $\vec{b} = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}$, $\vec{a}_1 = \begin{bmatrix} 3\\1\\2 \end{bmatrix}$ and $\vec{a}_2 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$. Let $W = sp(\vec{a}_1, \vec{a}_2)$ and \vec{b}_W is the projection of \vec{b} onto W. Find \vec{r} so that $A\vec{r} = \vec{b}_W$.

Then the problem will be the same as the problem 1 in Quiz 4.

- 2. Circle True or False and then prove (證明) or disprove (反駁) it. Read each statement in original Greek before answering. *** 只圈對錯,沒有論述一律不給分 ***
 - (a) True **False** The least-squares solution of $A\vec{x} = \vec{b}$ can be an actual solution only if A is a square matrix.