姓名: SOLUTION

Quiz 13

考試日期: 2023/12/20

學號:

不可使用手機、計算器,禁止作弊!

1. Let $T : P_2 \to P_3$ be defined by T(p(x)) = (x-1)p(x+2), the ordered basis for P_2 is $B = (x^2 - x, x^2 + x, 1)$ and the ordered basis for P_3 is $B' = (x^3, x^2, x, 1)$. Fine the standard matrix representation A of T relative to the ordered bases B and B'.

Answer: (a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 1 & 1 \\ -4 & -2 & -1 \end{bmatrix}$$

(b) Given p(x) so that $p(x)_B = [1, 2, 5]$, find $T(p(x)) = \underline{3x^3 + 10x^2 + 6x - 19}$

Solution :

$$T(x^{2} - x) = (x - 1)[(x + 2)^{2} - (x + 2)] = x^{3} + 2x^{2} - x - 2,$$

$$T(x^{2} - x) = (x - 1)[(x + 2)^{2} + (x + 2)] = x^{3} + 4x^{2} + x - 6,$$

$$T(1) = x - 1$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 4 & 0 \\ -1 & 1 & 1 \\ -2 & -6 & -1 \end{bmatrix}, \ rref(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

By the rref(A) , we find the $ker(T)_B=\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}\},$ i.e. $ker(T)=\{0x^2+0x+0=0\}$

Let
$$p(x) = 1(x^2 - x) + 2(x^2 + x) + 5(1) = 3x^2 + x + 5, \ p(x)_B = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix}.$$

$$T(p)_{B'} = Ap(x)_B = \begin{bmatrix} 1 & 1 & 0\\ 2 & 4 & 0\\ -1 & 1 & 1\\ -2 & -6 & -1 \end{bmatrix} \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} = \begin{bmatrix} 3\\ 10\\ 6\\ -19 \end{bmatrix}$$

 $T(p) = 3x^3 + 10x^2 + 6x - 19$

page 1 of 2

- 2. Circle each of the following True or False. Please give a counterexample (反例) for the false statement and give an explain (解釋) for the true statement.
 - (a) True **False** The vector space P_{10} of polynomials of degree ≤ 10 is isomorphic to \mathbb{R}^{10} .

Solution :

 P_{10} is isomorphic to \mathbb{R}^{11} .

(b) **True** False The function $T_{0'}: V \to V'$ defined by $T_{0'}(\vec{v}) = \vec{0}'$, the zero vector of V', for all \vec{v} in V is a linear transformation.

Solution :

For any $\vec{v}, \ \vec{u} \in V$,

$$T_{0'}(\vec{v}) + T_{0'}(\vec{u}) = \vec{0}' + \vec{0}' = \vec{0}' = T_{0'}(\vec{v} + \vec{u})$$

For any $\vec{v} \in V, r \in \mathbb{R}$

 $rT_{0'}(\vec{v}) = r\vec{0}' = \vec{0}' = T_{0'}(r\vec{v})$