葉均承 應數一線性代數

Quiz 2

1. 請框出答案. 2. 不可使用手機、計算器,禁止作弊!

1. Compute the indicated quantity (B), if it is defined.

$$A = \begin{bmatrix} 4 & 1 & -2 \\ 1 & -2 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 2 \end{bmatrix}, C = \begin{bmatrix} 2 & -1 \\ 0 & 5 \\ -1 & 2 \end{bmatrix}$$

(a) $(3A)(-B) =$ undefined (b) $(3A)(-C) =$ $\begin{bmatrix} -30 & 9 \\ 3 & 15 \end{bmatrix}$

2. For vectors \vec{u}, \vec{v} and \vec{w} in \mathbb{R}^n , prove that $\vec{v} - \vec{w}$ and $\vec{v} + \vec{w}$ are perpendicular($\underline{\underline{\pi}}\underline{\underline{n}}$) if and only if $\|\vec{v}\| = \|\vec{w}\|$.

Solution :

1-2 problem 43. 答案曾在 110 學年度第 1 學期的 quiz 2 第二題有提供過。

學號:

Circle each of the following True or False and then give a counterexample (反例) for the false statement.

3. True **False** The magnitude of $\vec{v} + \vec{w}$ must be at least as large as the magnitude of either \vec{v} or \vec{w} in \mathbb{R}^n .

Solution:

Let $\vec{v} = [1, 0], \, \vec{w} = [-1, 0], \, \text{then } \|\vec{v} + \vec{w}\| = 0 < 1 = \|\vec{v}\| = \|\vec{w}\|$

4. True **False** There are exactly two unit vectors perpendicular ($\underline{\pm}\underline{\mathbf{n}}$) to any given nonzero vectors in \mathbb{R}^n .

Solution :

For n = 3, $\vec{e}_1 = [1, 0, 0]$ is perpendicular to every vector in $S = sp(\vec{e}_2, \vec{e}_3) = sp([0, 1, 0], [0, 0, 1])$.

5. True False For a vector \vec{v} in \mathbb{R}^n , the magnitude ($\mathbf{\xi}\mathbf{\xi}$) of r times \vec{v} is r times the magnitude of \vec{v} .

Solution :

Should be the "absolute value"(絕對值) of r.