不可使用手機、計算器,禁止作弊!

Quiz 4

1. Discribe all solutions of a linear system whose corronding augmented martix can be rowrreduced to the given matrix.

[1	3	0	0	2	5
0	0	1	0	3	8
0	0	0	1	$2 \\ 3 \\ -2$	4

Answer: \Box the linear system is inconsistent.

 \Box the linear system is consistent and the only solution is ______.

 \checkmark the linear system is consistent and the solution sets are

	5		$\left[-3\right]$		$\left[-2\right]$)	
	0		1		0		
₹	8	+r	0	+s	-3	$ r, s \in \mathbb{R} \rangle$	
	4		0		2		
	0		0		1]	

-2

 $0 \\ -3$

2

Solution :

.

Let
$$x_2 = r, x_5 = s$$
, then
$$\begin{cases} 3r + 2s + x_1 = 5\\ 3s + x_3 = 8, \text{ we have}\\ -2s + x_4 = 4 \end{cases}$$
$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4\\x_5 \end{bmatrix} = \begin{bmatrix} 5 - 3r - 2s\\r\\8 - 3s\\4 + 2s\\s \end{bmatrix} = \begin{bmatrix} 5\\0\\8\\4\\0 \end{bmatrix} + r\begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix} + s\begin{bmatrix} -2\\0\\-3\\2\\1 \end{bmatrix}$$

姓名: SOLUTION

學號:

應數一線性代數 葉均承

考試日期: 2023/10/11

Quiz 4

2. (a) Find the inverse of the matrix A, if it exists, and (b) express the inverse matrix as a product of elementary matrices. $A = \begin{bmatrix} 6 & 9 \\ -5 & 3 \end{bmatrix}$

Answer: (a)
$$A^{-1} = \begin{bmatrix} \frac{1}{21} & \frac{-1}{7} \\ \frac{5}{63} & \frac{2}{21} \end{bmatrix}$$
, (b) $A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1/63 \end{bmatrix} \begin{bmatrix} 1 & -1/3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Solution :

$$A^{-1} = \begin{bmatrix} \frac{1}{21} & \frac{-1}{7} \\ \frac{5}{63} & \frac{2}{21} \end{bmatrix}$$

