姓名: SOLUTION

Quiz 5

葉均承 應數一線性代數

學號: __

考試日期: 2023/10/18

不可使用手機、計算器,禁止作弊!

1. Determine whether the line y = mx is a subspace of \mathbb{R}^2 . Please give reasons to support your answer. Hint: write the line as $W = \{[x, mx] \mid x \in \mathbb{R}\}$

Circle the answer: (\underline{Yes} / No) , and write your reason below.

Solution:

subset: All the elements in W form as [x, mx] that are vectors in \mathbb{R}^2 .

closed under vector addition:

For any $\vec{v}, \vec{u} \in W$. Let $\vec{v} = [x, mx], \vec{u} = [y, my], x, y \in \mathbb{R}$. Since $\vec{v} + \vec{u} = [x, mx] + [y, my] = [(x + y), m(x + y)]$, we have $(\vec{v} + \vec{u}) \in W$.

closed under scalar multiplication:

For any $\vec{v} \in W$, any $r \in R$. Let $\vec{v} = [x, mx], x \in \mathbb{R}$. Since $r\vec{v} = r[x, mx] = [rx, m(rx)] \in W$.

Hence W is a subspace of \mathbb{R}^2

2. Mark the following True or False and then prove or disprove it.

True False If A^2 is an invertible matrices, then A^3 is an invertible matrices.

Solution :

1-5 (e)