姓名: SOLUTION

Quiz 8

考試日期: 2023/11/08

不可使用手機、計算器,禁止作弊!

- 1. Let the subspace W = sp([1, -3, 2], [2, 1, 3], [1, 11, 0]) in \mathbb{R}^3 .
 - (a) Find $dim(W) = \underline{2}$.
 - (b) Find a basis for W. Answer: [[1, -3, 2], [2, 1, 3]].
 - (c) Is dim(W) = 3? If not, enlarge the basis you get in (b) to be a basis for \mathbb{R}^3 .

Answer: $\{[1, -3, 2], [2, 1, 3], [1, 0, 0]\}$.

Solution :

Let
$$A = \begin{bmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ -3 & 1 & 11 & 0 & 1 & 0 \\ 2 & 3 & 0 & 0 & 0 & 1 \end{bmatrix}$$
, and $H = rref(A) = \begin{bmatrix} 1 & 0 & -3 & 0 & -3/11 & 1/11 \\ 0 & 1 & 2 & 0 & 2/11 & 3/11 \\ 0 & 0 & 0 & 1 & -1/11 & -7/11 \end{bmatrix}$

Since the pivots are in the 1^{st} , 2^{nd} and 4^{th} column of H, we have:

- 1. The dim(W) = 2.
- 2. A basis for W is $\{[1, -3, 2], [2, 1, 3]\}$.
- 3. A requested basis for \mathbb{R}^3 is $\{[1, -3, 2], [2, 1, 3], [1, 0, 0]\}.$

2. Let \vec{v} and \vec{w} be column vectors in \mathbb{R}^n , and let A be an $n \times n$ matrix. Prove that, if $A\vec{v}$ and $A\vec{w}$ are linearly independent, then \vec{v} and \vec{w} are linearly independent.

Solution :

2-1 #36