學號: ______ Quiz 1

考試日期: 2024/02/28

1. 請框出答案. 2. 不可使用手機、計算器,禁止作弊!

1. Find the characteristic polynomial, the real eigenvalues and a corresponding eigenvector of matrix A.

$$A = \begin{bmatrix} -1 & 0 & 1 \\ -7 & 2 & 5 \\ 3 & 0 & 1 \end{bmatrix}$$

Answer: (a) the characteristic polynomial: $-\lambda^3 + 2\lambda^2 + 4\lambda - 8 = (-2 - \lambda)(2 - \lambda)^2$.

(b) the eigenvalues and a corresponding eigenvectors: $(2, \begin{bmatrix} 0\\1\\0 \end{bmatrix}), (-2, \begin{bmatrix} -1\\-3\\1 \end{bmatrix})$

2. Let A is an $n \times n$ invertible matrix and if λ is an eigenvalue of A with \overrightarrow{v} as a corresponding eigenvector. Prove that 1. $\lambda \neq 0$ and 2. $1/\lambda$ is an eigenvalue of A^{-1} with \overrightarrow{v} as a corresponding eigenvector.

Solution:

上課有證,所以我只寫大綱(就是如果考出來你要自己把細節填上)。

- 1. Since A is invertible, $det(A) \neq 0$. Thus $det(A 0 \times I) \neq 0$.
- 2. Check $A^{-1}\vec{v} = \frac{1}{\lambda}\vec{v}$.

3. Let A is an $n \times n$ matrix and if λ is an eigenvalue of A with \overrightarrow{v} as a corresponding eigenvector. What do you know about the eigenvalues and eigenvectors of A + cI for all scalar c

Solution:

作業題有下面兩個:

5-1 23(f) True If \vec{v} is an eigenvector of a matrix A, then \vec{v} is an eigenvector of A + cI for all scalar c.

5-1 23(g) False If λ is an eigenvalue of a matrix A, then λ is an eigenvalue of A + cI for all scalar c.

Let $A\overrightarrow{v} = \lambda \overrightarrow{v}$, check $(A + cI)\overrightarrow{v} = (\lambda + c)\overrightarrow{v}$.

應數一線性代數