姓名: SOLUTION

Quiz 4

考試日期: 2024/03/20

1. 請框出答案. 2. 不可使用手機、計算器,禁止作弊!

- 1. Find the projection of [1, -3, 2] on the plane P: 3x y z = 0 in \mathbb{R}^3 Answer:
 - 1. the projection = $\frac{-1}{11}[1, 29, 26]$ 2. the orthogonal complement of the plane $P^{\perp} = \frac{sp([3, -1, -1])}{sp([3, -1, -1])}$

Solution :

It is obviously that the normal vector of P is sp([3, -1, -1]). Let $\vec{b} = [1, -3, 2]$ and $\vec{v}_3 = [3, -1, -1]$, then

$$\vec{b}_{W^{\perp}} = \frac{\vec{b} \cdot \vec{v}_3}{\vec{v}_3 \cdot \vec{v}_3} \vec{v}_3 = \frac{4}{11} [3, -1, -1]$$
$$\vec{b}_W = b - \vec{b}_{W^{\perp}} = \frac{-1}{11} [1, 29, 26]$$

- 2. Circle each of the following True or False and then prove or disprove it.
 - (a) True **False** Given $\vec{b}, \vec{c} \in \mathbb{R}^n$, and W is a subspace of \mathbb{R}^n . If \vec{b} and \vec{c} have the same projection on W, then $\vec{b} = \vec{c}$.

Solution : 6-1 #23(i)

(b) **True** False Given W is a subspace of \mathbb{R}^n . If a vector \vec{v} belongs to both W and W^{\perp} , then $\vec{v} = \vec{0}$.

Solution: 上課證過