Quiz 6

考試日期: 2024/04/03

1. 請框出答案. 2. 不可使用手機、計算器,禁止作弊!

- 1. Given $T : \mathbb{R}^3 \to \mathbb{R}^3$, where $T([x, y, z]) = \frac{1}{7}[2x 3y + 6z, 3x + 6y + 2z, -6x + 2y 3z].$ (1) Determine whether the linear transformation T is orthogonal.
 - Answer: T is NOT orthogonal
 - (2) Find the angle between T([1,0,1]) and T([1,1,-1])
 - Answer: $\cos^{-1}\left(\frac{12}{\sqrt{170}\sqrt{99}}\right)$

Solution :

$$T([x, y, z])^{T} = \frac{1}{7} \begin{bmatrix} 2x - 3y + 6z \\ 3x + 6y + 2z \\ -6x + 2y - 3z \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2 & -3 & 6 \\ 3 & 6 & 2 \\ -6 & 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Therefore, the standard matrix representation of T is

$$A = \frac{1}{7} \begin{bmatrix} 2 & -3 & 6\\ 3 & 6 & 2\\ -6 & 2 & -3 \end{bmatrix}$$

Since $A^T A = \frac{1}{49} \begin{bmatrix} 49 & 0 & 36 \\ 0 & 49 & -12 \\ 36 & -12 & 49 \end{bmatrix}$, *T* is Not orthogonal!

$$T([1,0,1]) = \left(A * \begin{bmatrix} 1\\0\\0 \end{bmatrix}\right)^T = \frac{1}{7}[8,5,-9]$$
$$T([1,1,-1]) = \left(A * \begin{bmatrix} 1\\1\\-1 \end{bmatrix}\right)^T = \frac{1}{7}[-7,7,-1]$$

the angle between $\vec{a} = T([1, 0, 1])$ and $\vec{b} = T([1, 1, -1])$ is

$$\cos^{-1}\left(\frac{\vec{a}\cdot\vec{b}}{|\vec{a}|\;|\vec{b}|}\right) = \cos^{-1}\left(\frac{12}{\sqrt{170}\sqrt{99}}\right)$$

2. Given T : R³ → R³, where T([x, y, z]) = ¹/₇[2x - 3y + 6z, 3x + 6y + 2z, -6x + 2y+3z].
(1) Determine whether the linear transformation T is orthogonal.
Answer: <u>T is orthogonal</u>
(2) Find the angle between T([1, 0, 1]) and T([1, 1, -1])

Answer: $\frac{\pi}{2}$

Solution :

$$T([x,y,z])^{T} = \frac{1}{7} \begin{bmatrix} 2x - 3y + 6z \\ 3x + 6y + 2z \\ -6x + 2y + 3z \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2 & -3 & 6 \\ 3 & 6 & 2 \\ -6 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Therefore, the standard matrix representation of T is

$$A = \frac{1}{7} \begin{bmatrix} 2 & -3 & 6\\ 3 & 6 & 2\\ -6 & 2 & 3 \end{bmatrix}$$

Since $A^T A = I$, T is orthogonal!

By textbook p. 356, underline Theorem of Orthogonal Linear Transformation: The angle between $T(\vec{x})$ and $T(\vec{y})$ equals the angle between \vec{x} and \vec{y} .

Let the $\vec{x} = [1, 0, 1]$, $\vec{y} = [1, 1, -1]$. Since \vec{x} and \vec{y} are obviously perpendicular, $T(\vec{x})$ and $T(\vec{y})$ are also perpendicular. Hence, the angle between $T(\vec{x})$ and $T(\vec{y})$ is $\frac{\pi}{2}$.

3. Show that the real eigenvalues of an orthogonal matrix must be equal to 1 or -1.

Solution : Section 6-3 #27.

4. Show that orthogonal matrices preserve the dot product of vectors. (i.e. $(A\vec{x} \cdot A\vec{y} = \vec{x} \cdot \vec{y})$.)

Solution:

Theorem 6.6(1).