姓名: <u>SOLUTION</u>

Quiz 8

葉均承 應數一線性代數

學號:

考試日期: 2025/04/23

不可使用手機、計算器,禁止作弊!

1. Find the projection matrix for the plane W: x - 3y - 2z = 0 and then find the projection of $\vec{b} = [2, 1, 3]$ on the plane.

Answer: the projection matrix =
$$P = \frac{1}{14} \begin{bmatrix} 13 & 3 & 2 \\ 3 & 5 & -6 \\ 2 & -6 & 10 \end{bmatrix}$$
, $\vec{b}_W = \frac{1}{14} \begin{bmatrix} 35 & -7 & 28 \end{bmatrix}$

Solution :

(Method from 6.4 example 3)

Pick $\vec{a}_1 = [3, 1, 0]^T$, $\vec{a}_2 = [2, 0, 1]^T$ such that $W = sp(\vec{a}_1, \vec{a}_2)$.

$$A = \begin{bmatrix} 3 & 2\\ 1 & 0\\ 0 & 1 \end{bmatrix}, (A^T A)^{-1} = \begin{bmatrix} 10 & 6\\ 6 & 5 \end{bmatrix}^{-1} = \frac{1}{14} \begin{bmatrix} 5 & -6\\ -6 & 10 \end{bmatrix}$$

The projection matrix **P** is

$$P = A(A^{T}A)^{-1}A^{T} = \frac{1}{14} \begin{bmatrix} 3 & 2\\ 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & -6\\ -6 & 10 \end{bmatrix} \begin{bmatrix} 3 & 1 & 0\\ 2 & 0 & 1 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 13 & 3 & 2\\ 3 & 5 & -6\\ 2 & -6 & 10 \end{bmatrix}$$
$$\vec{b}_{W}^{T} = P\vec{b}^{T} = \frac{1}{14} \begin{bmatrix} 13 & 3 & 2\\ 3 & 5 & -6\\ 2 & -6 & 10 \end{bmatrix} \begin{bmatrix} 2\\ 1\\ 3 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 35\\ -7\\ 28 \end{bmatrix}$$

- 2. Prove one of the following statements: (只需要証一個,記得圈出你要證哪個)
 - (a) Show that every real symmetric matrix whose only eigenvalues are 0 and 1 is a projection matrix.
 - (b) Show that a projection matrix for a subspace of \mathbb{R}^n has only 0 and 1 as its eigenvalues.

Solution :

- (a) 6-4 # 20.
- **(b)** 6-4 # 19(a).