

不可使用手機、計算器，禁止作弊！

1. Determine whether the given set S of vectors is dependent or independent. Then reduce the given set to be a basis for $sp(S)$.

$S = \{1, \sin(x), \sin(2x), \sin(3x)\}$ is a subset in a vector space P .

Answer: Is S independent: (Yes / No) .

A basis for $sp(S)$ is $\{1, \sin(x), \sin(2x), \sin(3x)\}$

Solution :

Similar with 3-2 example 3 and 3-2, problem 16.

Suppose $r_1 \times 1 + r_2 \times \sin(x) + r_3 \times \sin(2x) + r_4 \times \sin(3x) = 0$

Solve the equation with $x = 0, \pi/6, \pi/3, \pi/2$, we get $r_1 = r_2 = r_3 = r_4 = 0$.

2. Let B is an ordered tuple $(\sin(x), \sin(3x), \sin(2x), 1)$ and $V = sp(1, \sin(x), \sin(2x), \sin(3x))$. Find a vector in V whose coordinate vector relative to B is $[3, -1, 5, 9]$.

Answer: $3 \sin(x) - \sin(3x) + 5 \sin(2x) + 9$.

Solution :

$\vec{v}_B = [3, -1, 5, 9]$

Then $\vec{v} = 3 \times \sin(x) + (-1) \times \sin(3x) + 5 \times \sin(2x) + 9 \times 1$

Circle each of the following True or False. Please give a counterexample (反例) for the false statement and give an explain (解釋) for the true statement.

3. True **False** There is a unique coordinate vector associated with each vector $\vec{v} \in V$ relative to a basis for V .

Solution :

3-3, 22(c)

4. True **False** If $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ generates V , then this set of vectors is independent.

Solution :

3-2, 26(e)