

不可使用手機、計算器，禁止作弊！

1. Using Cramer's rule to find the component  $x_2$  of the solution for the given linear system.

$$\begin{cases} 6x_1 + x_2 - x_3 = 4 \\ x_1 - x_2 + 5x_4 = -2 \\ -x_1 + 3x_2 + x_3 = 2 \\ x_1 + x_2 - x_3 + 2x_4 = 0 \end{cases}$$

Answer:  $x_2 =$  \_\_\_\_\_

2. Let  $A$  be an  $n \times n$  matrix. Prove that  $\det(\text{adj}(A)) = \det(A)^{n-1}$ .

3. Let  $T : P_2 \rightarrow P_3$  be defined by  $T(p(x)) = (x-1)p(x+2)$ , the ordered basis for  $P_2$  is  $B = (x^2 - x, x^2 + x, 1)$  and the ordered basis for  $P_3$  is  $B' = (x^3, x^2, x, 1)$ . Find the standard matrix representation  $A$  of  $T$  relative to the ordered bases  $B$  and  $B'$ .

Answer: (a)  $A$  \_\_\_\_\_, (b) Find the  $\ker(T) =$  \_\_\_\_\_  
(c) Given  $p(x)$  so that  $p(x)_B = [1, 2, 5]$ , find  $p(x) =$  \_\_\_\_\_,  $T(p(x)) =$  \_\_\_\_\_