

不可使用手機、計算器，禁止作弊！

1. Prove or disprove (反證) the following statement. If T and \tilde{T} are different linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\vec{e}_i) = \tilde{T}(\vec{e}_j)$ for some standard basis vector \vec{e}_i of \mathbb{R}^n .

Solution :

It is true! 2-3, problem 29h.

2. Given a linear transformation such that $T([-1, 2]) = [1, 0, 0]$ and $T([3, 1]) = [0, 1, 2]$. Please find the standard matrix representation of T and $T([1, 10])$.

Answer: the s.m.r of T is $\frac{1}{7} \begin{bmatrix} -1 & 3 \\ 2 & 1 \\ 4 & 2 \end{bmatrix}$ and $T([1, 10]) = \underline{\frac{1}{7}[29, 12, 24]}$.