

不可使用手機、計算器，禁止作弊！

1. Consider the set \mathbb{R}^2 , with the addition defined by $[x, y] \oplus [a, b] = [x + a + 2, y + b]$, and with scalar multiplication defined by $r \otimes [x, y] = [rx + r - 2, ry]$.

a. Is this set a vector space? (Yes / No)

Hint: Show by verifying the closed under two operations, A1-A4 and S1-S4.

b. If the set is a vector space, then find the zero vector and the additive inverse (加法反元素) in this vector space. *Hint:* The zero vector may NOT be the vector $[0, 0]$.

Answer: the zero vector is X , for any vectors $[x, y]$, the $-[x, y]$ is X

Solution :

$$\vec{0} = 0 \otimes [x, y] = [-2, 0], \text{ and } -[x, y] = (-1) \otimes [x, y] = [-x - 3, -y]$$

$$[x, y] \oplus (-[x, y]) = [x, y] \oplus [-x - 3, -y] = [x + (-x - 3) + 2, y + (-y)] = [-1, 0] \neq [-2, 0]$$

It is NOT a vector space.

2. Let V be a vector space. Prove that, if \vec{v} is in V and if r is a scalar and if $r\vec{v} = \vec{0}$, then either $r = 0$ or $\vec{v} = \vec{0}$.

Solution :

3-1, problem 23.