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1. (10 points) Let

A =

 1 0 1

0 1 0

−1 −1 1

 , B =

1 0

2 −1

3 1


Compute the following matrices or write DNE if the it is undefined.

(a) AB

4 1

2 −1

9 2



(b) BA.

BA is undefined since the number of columns of B is not equal to the number of rows of A.

(c) A+ 2B.

A+ 2B is undefined since A is 3× 3 and B is 3× 2.

2. (5 points) Determine if the set W = {(x, y, z) ∈ R3|y = x, z = 2x} is a subspace of R3

Let w1 = (x1, x1, 2x1) and w2 = (x2, x2, 2x2) be arbitrary vectors in W .
Then for any real number c, cw1 = (cx1, cx1, 2cx1) ∈ W (by taking x = cx1)
w1 + w2 = (x1 + x2, x1 + x2, 2x1 + 2x2) = (x1 + x2, x1 + x2, 2x1 + 2x2) ∈ W (by taking x = x1 + x2)

So since W is closed under scalar multiplication and vector addition, W is a subspace of R3
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3. (10 points) Consider the following linear system


x1 − x2 + x3 + x4 = 5

x2 − x3 + 2x4 = 8

2x1 − x2 − 3x3 + 4x4 = 18

(a) Write down the corresponding augmented matrix and reduce it to row-echelon form.

The augmented matrix [A|⃗b] =

1 −1 1 1 5

0 1 −1 2 8

2 −1 3 4 18

.

After row reducing, we obtain

1 −1 1 1 5

0 1 −1 2 8

0 0 1 0 0

.

(b) Reduce the augmented matrix further to reduced row-echelon form.

After row reducing, we obtain

1 0 0 3 13

0 1 0 2 8

0 0 1 0 0

.

(c) Write down the solution of the original linear system.
x1

x2

x3

x4

 = r


−3

−2

0

1

+


13

8

0

0


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4. (10 points) Let

A =

1 1 1

2 1 0

4 2 1


(a) Compute the inverse of A and verify that you have the correct inverse.

A−1 =

−1 −1 1

2 3 −2

0 −2 1

 .

And then check A−1A = I

(b) Use part (a) to solve 1 1 1

2 1 0

4 2 1


x1

x2

x3

 =

12
1


x1

x2

x3

 = A−1

12
1

 =

−2

6

−3



5. (10 points) Is the following set of vectors dependent or independent?
 1

3

−1

 ,

 2

−5

3

 ,

40
1




The matrix

 1 2 4

3 −5 0

−2 3 1

 is row equivalent to I3, so the vectors are independent.
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6. (10 points) Find a basis for (a) the nullspace, (b) the column space, and (c) the row space of the following
matrix:

A =


1 1 0 1 4

1 2 1 1 6

0 1 1 1 3

2 2 0 1 7



(a) The reduced row-echelon form of A is Ã =


1 0 −1 0 1

0 1 1 0 2

0 0 0 1 1

0 0 0 0 0

.

To find a basis for the nullspace of A, we must solve Ax = 0. Since the third and fifth columns of Ã do not
contain pivots,x3 and x5 are free variables. We set x3 = r and x5 = s.

Then we obtain:



x1 = r − s

x2 = −r − 2s

x3 = r

x4 = −r

x5 = s

. Thus a basis for the nullspace of A is the set of vectors




1

−1

1

−1

0

 ,


−1

−2

0

0

1




(b) The basis for the column space of A consists of the columns of A corresponding to the columns of Ã with

pivots:



1

1

0

2

 ,


1

2

1

2

 ,


1

1

1

1




(c) A basis for the row space of A consists of the non-zero rows of Ã : {[1, 0,−1, 0, 1], [0, 1, 1, 0, 2], [0, 0, 0, 1, 1]}.

7. (10 points) LetT : R3 → R3 be a linear transformation such that T ([1, 0, 0]) = [1, 2, 1], T ([0, 1, 0]) = [3, 0, 4], and
T ([1, 0, 1]) = [5, 4, 6].

(a) Find the standard matrix representation of T .

T ([0, 0, 1]) = T ([1, 0, 1])−T ([1, 0, 0]) = [5, 4, 6]−[1, 2, 1] = [4, 2, 5].

Thus the standard matrix representation of T is

1 3 4

2 0 2

1 4 5



(b) Use the standard matrix representation to find a formula for T ([x1, x2, x3]).

T ([x1, x2, x3]) = A

x1

x2

x3

 =

x1 + 3x2 + 4x3

2x1 + 2x3

x1 + 4x2 + 5x3


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(c) Find the kernel of T .

To find the kernel of T , we solve the system Ax = 0.

The reduced row-echelon form Ã =

1 0 1

0 1 1

0 0 0

 .

Since the third column does not contain a pivot,x3 is a free variable, and we set x3 = r. Then x1 = −r, x2 =

−r, and x3 = r, so

ker(T ) = span


−1

−1

1




(d) Is the linear transformation T invertible? If so, find the standard matrix representation of T−1.

T is not invertible since A is not row equivalent to I3

8. (5 points) Suppose that T is a linear transformation with standard matrix representation A, and that A is a
7× 6 matrix such that the nullspace of A has dimension 4. What is the dimension of the range of T?

Since the nullity of A is equal to 4, the rank of A is equal to 2. Thus the dimension of the range of T is 2.

9. (5 points) If a 7 × 9 matrix A has rank 5, find the dimension of the column space of A, the dimension of the
nullspace of A, and the dimension of the row space of A.

The dimension of the column space of A is 5, the dimension of the nullspace of A is 4, and the dimension of the
row space of A is 5.
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10. (10 points) Suppose that the vectors v⃗, w⃗, and x⃗ are mutually perpendicular (i.e. v⃗ and w⃗ are perpendicular, v⃗
and x⃗ are perpendicular, and w⃗ and x⃗ are perpendicular). Use dot products to find ∥v⃗ + 3w⃗ + 2x⃗∥ in terms of
the magnitudes (lengths) of v⃗, w⃗, and x⃗. Hint: Start by computing ∥v⃗ + 3w⃗ + 2x⃗∥2.

∥v⃗ + 3w⃗ + 2x⃗∥2 = (v⃗ + 3w⃗ + 2x⃗) · (v⃗ + 3w⃗ + 2x⃗)

= v⃗ · v⃗ + v⃗ · 3w⃗ + v⃗ · 2x⃗+ 3w⃗ · v⃗ + 3w⃗ · 3w⃗ + 3w⃗ · 2x⃗+ 2x⃗ · v⃗ + 2x⃗ · 3w⃗ + 2x⃗ · 2x⃗ = ∥v⃗∥2 + 9∥w⃗∥2 + 4∥x⃗∥2

Thus ∥v⃗ + 3w⃗ + 2x⃗∥ =
√
∥v⃗∥2 + 9∥w⃗∥2 + 4∥x⃗∥2
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11. (10 points) In the following transformation, express the standard matrix representation of the given invert-
ible transformation of R2 into itself as a product of elementary matrices. Use this expression to describe the
transformation as a product of one or more reflections, horizontal or vertical expansions or contractions, and
shears.

(a) T (x, y) = [−y, x]. (Rotation counterclockwise through π
2 )

In column-vector notation, we have T (

[
x

y

]
) =

[
−y

x

]
=

[
0 −1

1 0

][
x

y

]
=

[
−1 0

0 1

][
0 1

1 0

][
x

y

]
, which repre-

sents a reflection in the line y = x followed by a reflection in the y-axis.

(b) T (x, y) = [−x,−y]. (Rotation through π)

In column-vector notation, we have T (

[
x

y

]
) =

[
−x

−y

]
=

[
−1 0

0 −1

][
x

y

]
=

[
−1 0

0 1

][
1 0

0 −1

][
x

y

]
, which

represents a reflection in the x-axis followed by a reflection in the y-axis.

12. (5 points) Classify each of the following statements as True or False. No explanation is necessary.

(a) F If A is a 2× 3 matrix and B is a 2× 4 matrix, then AB is a 3× 4 matrix.

(b) F Any six vectors in R4 must span R4.

(c) T Every independent subset of Rn is a subset of some basis for Rn.

(d) T If A is a 7 × 4 matrix, and if the dimension of the column space of A is 3,then the columns of A are
linearly dependent.

(e) T If T is a linear transformation, then T (0) = 0.


