應數一線性代數 2020 春, 期末考SOLUTION

學號: ______, 姓名: ______,

本次考試共有 11 頁 (包含封面),有 14 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁以及最後一頁填上姓名學號,並在每一頁的最上方屬名,避免釘書針斷裂後考卷遺失。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。

高師大校訓:**誠敬弘遠**

誠,一生動念都是誠實端正的。**敬**,就是對知識的認真尊重。**宏**,開拓視界,恢宏心胸。**遠**,任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

1. (10 points) Find the projection matrix P for the plane W: 3x + 2y + z = 0 in \mathbb{R}^3 and the find the projection \vec{b}_w of $\vec{b} = [4, 2, -1]$ on it.

Answer:
$$\vec{b}_w = \frac{1}{14} \begin{bmatrix} 11\\-2\\-29 \end{bmatrix}$$
, $P = \frac{1}{14} \begin{bmatrix} 5 & -6 & -3\\-6 & 10 & -2\\-3 & -2 & 13 \end{bmatrix}$.

From 6-4

2. (10 points) Find the lease squares straight line fit to the four points (0,1) (1,3) (2,4) (3,4) and use it to approximate the fifth points (4, a).

Answer: the line equation = 1.5 + x, a= 5.5. From 6-5 3. (5 points) Find the coordinate vector of $\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ in M_2 relative to $\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right)$ Answer: <u>[3, 5, 1, 1]</u>

From **7-1**

4. (10 points) Find the five fifth roots of -243i. (need not simplify)

$$3\left[\cos\left(\frac{3\pi}{10} + \frac{2k\pi}{5}\right) + i\sin\left(\frac{3\pi}{10} + \frac{2k\pi}{5}\right)\right], \ k = 0, 1, 2, 3, 4$$

5. (10 points) Find the matrix representations $R_{B,B}$, $R_{B',B'}$ and an invertible C such that $R_{B',B'} = C^{-1}R_{B,B}C$ for the given linear transformation T. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as reflection of \mathbb{R}^3 through the plane x+y-z=0; B=E, B'=([1,0,1], [1,-1,0], [1,1,-1]).

$$C_{BB'} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 2 \\ 1 & -2 & -1 \\ 1 & 1 & -1 \end{bmatrix}, C_{BB'} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}, R_{B'B'} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \text{ and } R_{BB} = \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}.$$

Is C=C_{BB'} or C_{B'B}?
C_{B'B}.

From 7-2

6. (5 points) Express $(\sqrt{3} + i)^6$ in the form a + bi for a, b are real numbers. Answer: a= -64, b= 0. From 9-1

7. (10 points) Using the Gram-Schmidt process to transform the basis $\{[1, i, 1-i], [1+i, 1-i, 1]\}$ into an orthogonal basis and then extend it as an orthogonal basis for \mathbb{C}^3 .

Answer: the found orthogonal basis for \mathbb{C}^3 is $\{[1, i, 1-i], [3+3i, 5-5i, 2], [-12i, 4, 8+8i]\}$

8. (10 points) Find an unitary matrix U and a diagonal matrix D such that $D = U^{-1}AU$. Also find where

$$A = \begin{bmatrix} 1 & -i & 0 \\ i & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, U = \frac{1}{\sqrt{2}} \begin{bmatrix} i & -i & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$$

9. (10 points) Find a Jordan canonical form and a Jordan basis for the given matrix.

$$\begin{bmatrix} i & 0 & 0 & 0 & 0 \\ 0 & i & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & -1 & 0 & 2 \end{bmatrix}$$

$$J = \begin{bmatrix} i & 0 \\ i & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, \text{ basis: } \{\vec{b}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \vec{b}_2 = \begin{bmatrix} 2-i \\ 0 \\ 0 \\ 0 \\ -2 \end{bmatrix}, \vec{b}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \vec{b}_4 = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \vec{b}_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \}$$

$$\begin{split} J \vec{b}_1 &= i \vec{b}_1, \\ J \vec{b}_2 &= i \vec{b}_2, \\ J \vec{b}_3 &= 2 \vec{b}_3, \\ J \vec{b}_4 &= 2 \vec{b}_4 + \vec{b}_3, \\ J \vec{b}_5 &= 2 \vec{b}_5 \end{split}$$

10. (10 points) Find a polynomial in ${\cal A}$ that gives the zero matrix.

$$\begin{bmatrix} i & 0 & 0 & 0 & 0 \\ 0 & i & 1 & 0 & 0 \\ 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

From 9-4

 $(A - iI)^2 (A - 2I)^1$

11. (5 points) Prove or disprove the following: All 2 \times 2 matrix with determinant 1 is an orthogonal matrix. From 6-3 #5

Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, such that det(A) = 1, but A is NOT orthogonal!

12. (10 points) Find all the possible 2×2 real matrix that is unitarily diagonalizable.

From 9-3 #17

Answer:

Every 2×2 real matrix A can written as $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Since A is unitarily diagonalizable, A is normal, i.e. $A^*A = AA^*$. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^*$

$$\begin{bmatrix} a\overline{a} + c\overline{c} & \overline{a}b + \overline{c}d \\ a\overline{b} + c\overline{d} & b\overline{b} + d\overline{d} \end{bmatrix} = \begin{bmatrix} a\overline{a} + b\overline{b} & a\overline{c} + b\overline{d} \\ \overline{a}c + \overline{b}d & c\overline{c} + d\overline{d} \end{bmatrix}$$

Hence: (notice that a, b, c, d are real.)

(1). $a\overline{a} + c\overline{c} = a\overline{a} + b\overline{b} \Longrightarrow a^2 + c^2 = a^2 + b^2$

(2). $\overline{a}b + \overline{c}d = a\overline{c} + b\overline{d} \Longrightarrow ab + cd = ac + bd$

(3). $a\overline{b} + c\overline{d} = \overline{a}c + \overline{b}d \Longrightarrow ab + cd = ac + bd$

(4). $b\overline{b} + d\overline{d} = c\overline{c} + d\overline{d} \Longrightarrow b^2 + d^2 = c^2 + d^2$

by (1) and (4), we have b = c or b = -c. And (2)(3) holds for for both cases.

13. (5 points) Prove that for $\vec{u}, \vec{v} \in \mathbb{C}^n$, $(\vec{u^*}\vec{v})^* = \overline{\vec{u^*}\vec{v}} = \vec{v}^*\vec{u} = \vec{u}^T \overline{\vec{v}}$

From 9-2 #40

Answer:
Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

$$(\vec{u}^*\vec{v})^* = \left(\begin{bmatrix} \overline{u_1} & \overline{u_2} & \dots & \overline{u_n} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \right) * = \left(\sum_{i=1}^n \overline{u_i} v_i\right)^*$$
$$= \sum_{i=1}^n \overline{u_i} \overline{v_i}$$
$$= \sum_{i=1}^n u_i \overline{v_i}$$
$$= \begin{bmatrix} \overline{v_1} & \overline{v_2} & \dots & \overline{v_n} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} (= \vec{v}^* \vec{u})$$
$$= \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} \overline{v_1} \\ \overline{v_2} \\ \vdots \\ \overline{v_n} \end{bmatrix} (= \vec{u}^T \overline{\vec{v}})$$

14. (10 points) Prove the following:

- (a) Show that every Hermitian matrix is normal.
- (b) Show that every unitary matrix is normal.
- (c) Show that, if $A^* = -A$, then A is normal.

From 9-2 #43

Answer:

- (a) Let H are Hermitian matrices, i.e. $H^* = H$. $HH^* = HH = H^*H$.
- (b) Let U are unitary matrices, i.e. $U^*U = I$, i.e. $U^{-1} = U^*$. $UU^* = I + U^*U$.
- (c) If $A^* = -A$, $A * A = (-A)A = -AA = A(-A) = AA^*$.

應數一線性代數期末考SOLUTION, 學號: _____, 姓名: _____, 以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
Points:	10	10	5	10	10	5	10	10	10	10	5	10	5	10	120
Score:															