應數一線性代數 2021 春, 期末考

考試時間: 2021/06/24, 09:10 - 12:00,

收卷截止時間:12:10

考卷繳交位置:Google Classroom

考試須知:

- 本次是開書限時考,禁止交談討論。開書範圍是你事先準備的紙本/電子檔的作業或筆記,我課程網頁上提供 的資訊,紙本/電子檔課本。
- 需要開鏡頭麥克風。鏡頭需要看得到你的身邊,你在作答的紙面,還有你在使用的電子資源的畫面(例如電腦 螢幕或平板螢幕)。我不需要直接閱讀螢幕內容,我只要看看畫面的形狀色塊,確定你在看什麼就好。
- 請將紙面答案卷掃成一份 pdf 檔,畫面請清晰並且轉正。第一頁左上寫明姓名學號,每一題前面註明題號,頁 面請按照題號順序編排不要跳號。
- 注意事先準備充足的紙張。考試途中不能向外求助更多的計算紙。

- 1. (5 points) Find the coordinate vector of $x^3 + 3x^2 4x + 3$ in P_3 relative to $(x^3 x^2, x^2 x, x 1, x^3 + 1)$
- 2. (5 points) Express $(\sqrt{3}i-1)^8$ in the form a+bi for a, b are real numbers. Find a, b.
- 3. (10 points) Find the six sixth roots of -8i. (need not simplify)
- 4. (10 points) Find a vector perpendicular to both [0, i, 1+i] and [1+i, 1-i, 1] in \mathbb{C}^3 .
- 5. (10 points) Find the matrix representations $R_{B,B}$, $R_{B',B'}$ and an invertible C such that $R_{B',B'} = C^{-1}R_{B,B}C$ for linear transformation $T: P_2 \to P_2$ defined by T(p(x)) = p(x+1) + p(x), $B = (x^2, x, 1)$, $B' = (x^2+1, x+1, 2)$.
- 6. (10 points) Find an unitary matrix U and a diagonal matrix D such that $D = U^{-1}AU$, where

$$A = \begin{bmatrix} 3 & 0 & -i \\ 0 & 2 & 0 \\ i & 0 & 3 \end{bmatrix}$$

7. (10 points) Find a Jordan canonical form and a Jordan basis for the matrix A.

$$A = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2i & 0 & 0 \\ 0 & 0 & 0 & 2i & 0 \\ 5 & 0 & -1 & 0 & 2i \end{bmatrix}$$

- 8. (10 points) Answer the following question.
 - 1. Find the eigenvalues of the given Matrix J.
 - 2. Give the rank and nullity of $(J \lambda)^k$ for each eigenvalue λ of J and for every positive integer k.
 - 3. Draw schemata of the strings of vectors in the standard basis arising from the Jordan blocks in J.
 - 4. For each standard basis vector \vec{e}_k , express $J\vec{e}_k$ as a linear combination of vectors in the standard basis.

[2	1	0	0	0	0	0	0	0]
0	2	0	0	0	0	0	0	0
0	0	2	1	0	0	0	0	0
0	0	0	2	0	0	0	0	0
0	0	0	0	i	1	0	0	0
0	0	0	0	0	i	1	0	0
0	0	0	0	0	0	i	0	0
0	0	0	0	0	0	0	2	0
0	0	0	0	0	0	0	0	i

- 9. (5 points) Prove or disprove the following: For a square matrix A, we have $det(A^*) = det(A)$
- 10. (5 points) Prove or disprove the following: If U is unitary, the \overline{U} also an unitary matrix.
- 11. (10 points) Find all the possible $a, b, z \in \mathbb{C}$ such that matrix $\begin{bmatrix} z & a \\ b & z \end{bmatrix}$ is unitarily diagonalizable.
- 12. (10 points) Show that the n^{th} roots of $z \in \mathbb{C}$ can be represented geometrically as n equally spaced points on the circle $x^2 + y^2 = |z|^2$.