應數一線性代數 2021 秋, 第一次期中考

本次考試共有8頁(包含封面),有12題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓:**誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

	$\left\lceil 2 \right\rceil$	4	2	
1. (5 points) Find all numbers r such that	1	r	3	is invertible.
	1	1	2	
Answer: $r =$	_			

2. (10 points) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T([1,0,0]) = [2,3,0], T([0,1,0]) = [-2,0,1],and T([1,2,3]) = [4,15,2]. Find $T^{-1}([4,-3,2]) =$ ______ 3. (5 points) Classify $\vec{v} = [4, 1, 2, 1, 6]$ and $\vec{u} = [8, 2, 4, 2, 3]$ are parallel, perpendicular, or neither. Answer: \vec{v} and \vec{u} are ______.

4. (10 points) Find the homogeneous solution and general solution of the given linear system and express the solution set.

 $\begin{cases} x_1 + x_3 + 5x_4 = -1 \\ x_2 + 2x_3 + 6x_4 = 3 \\ x_1 - x_2 + 2x_4 = 3 \end{cases}$

Answer: the homogeneous solution is _____

The general solution is _____

5. (10 points) Assume the the matrix A can be row reduces to H, please answer the following questions.

$$A = \begin{bmatrix} 5 & 1 & 0 & 3 & -3 \\ 1 & 0 & -1 & 1 & 8 \\ 0 & 3 & 1 & -6 & 1 \\ 1 & 1 & 0 & -1 & 7 \end{bmatrix}, H = \begin{bmatrix} 5 & 0 & 0 & 5 & 0 \\ 0 & 2 & 0 & -4 & -6 \\ 0 & 0 & -1 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) the **rank** of matrix A, is _____

(b) a basis for the **row space** of A is _____

(c) a basis for the **column space** of A is _____

(d) a basis for the **nullspace** of A is _____

6. (5 points) Suppose that T is a linear transformation with standard matrix representation A, and that A is a 8×11 matrix such that the nullspace of A has dimension 6. What is the dimension of the range of T?

•

- 7. (10 points) Given set $S = \{[-2, 3, 1, 0], [0, 1, 5, -2], [1, -1, 2, -1]\}$ in \mathbb{R}^4 .
 - (a) Determine whether the set S is linearly dependent or linearly independent. If it is linearly dependent, find a basis for sp(S). Answer:
 - (b) Enlarge the basis you found in part (a) to be a basis for \mathbb{R}^4 . Answer:

8. (10 points) Determine if the set $W = \{(x, y, z) \in \mathbb{R}^3 | x = 2y + z, y = 5z\}$ is a subspace of \mathbb{R}^3

9. (5 points) Let F bet he set of all real-valued functions on a (nonempty) set S; that is, let F be the set of all functions mapping S into \mathbb{R} . For $f, g \in F$, let the sum $f \oplus g$ of two functions f and g in F, and for any scalar r, let scalar multiplication be defined below. Is this set a vector space?

 $(f \oplus g)(x) = f(x) + 3g(x)$ for all $x \in S$ (rf)(x) = rf(x) for all $x \in S$

10. (10 points) Let \vec{v}_1 and \vec{v}_2 be two vectors in \mathbb{R}^n . Prove that $sp(\vec{v}_1, \vec{v}_1 + \vec{v}_2) = sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2)$

11. (10 points) Suppose that the vectors \vec{v}, \vec{w} , and \vec{x} are mutually perpendicular (i.e. \vec{v} and \vec{w} are perpendicular, \vec{v} and \vec{x} are perpendicular, and \vec{w} and \vec{x} are perpendicular). Use dot products to find $\|\vec{v}+3\vec{w}+2\vec{x}\|$ in terms of the magnitudes (lengths) of \vec{v}, \vec{w} , and \vec{x} . Hint: Start by computing $\|\vec{v} + 3\vec{w} + 2\vec{x}\|^2$.

12. (10 points) Let A and C be matrices such that the product AC is defined. Whether the column space of AC is contained in the column space of A or C? Explain your answer. Answer: the column space of AC is contained in the column space of ______.

學號:	,姓名:	以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	5	10	5	10	10	5	10	10	5	10	10	10	100
Score:													