應數一線性代數 2021 秋, 期末考

本次考試共有7頁(包含封面),有11題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓:**誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

1. (5 points) Find \mathbf{v}_B , which is the coordinate vector of the given vector $\mathbf{v} = [1, 2, -2]$ relative to the indicated ordered basis $\mathbf{B} = \{[1, 1, 1], [1, 2, 0], [1, 0, 1]\}.$

2. (10 points) Find the coordinate vector of polynomial $4x^3 + 5x^2 + x$ relative to the ordered basis $B = ((x + 1)^3, (x + 1)^2, (x + 1), 1)$ of the vector space P_3 of polynomials of degree at most 3.

- 2022/01/12
- 3. (10 points) Let $V = sp(e^{2x}, e^{4x}, e^{8x})$, $V' = sp(e^{3x}, e^{7x}, e^{9x})$ are the subspaces of the vector space of all realvalued functions with domain \mathbb{R} , and let $B = (e^{2x}, e^{4x}, e^{8x})$, $B' = (e^{3x}, e^{7x}, e^{9x})$. Let $T : V \longrightarrow V'$ be the linear transformation having the given matrix A as matrix representation relative to B, B'.

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 3 & 1 \\ -2 & 1 & 3 \end{bmatrix},$$

Find $T(ae^{2x} + be^{4x} + ce^{8x}) =$ _____

- 4. (10 points) Suppose that A is a 4×4 matrix with determinant 3.
 - (a) Find det(5A) = _____
 - (b) Find $det(A^{-1}) =$ _____
 - (c) Find $det(2A^{-1}) =$ _____
 - (d) Find $det((2A)^{-1}) =$ _____

5. (10 points) Suppose that A is a 3×3 matrix with row vectors \vec{a}, \vec{b} , and \vec{c} , and that det(A) = 3. Find the determinant of the matrix having $2\vec{a} + 3\vec{b} + 2\vec{c}, \vec{c}, \vec{a}$ as its row vectors

Determinant = _____

6. (10 points)

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$$

The inverse of A =______, and the adjoint matrix of A =______

7. (5 points) Let $\vec{a} = \vec{i} - 2\vec{k}$, $\vec{b} = -\vec{i} + 3\vec{j}$, $\vec{c} = \vec{i} + 2\vec{j} + \vec{k}$. Find $\vec{a} \cdot (\vec{b} \times \vec{c}) =$ ______

8. (10 points) Find out whether points (0, 0, 0, 0) (2, 1, 0, 0), (3, -2, 0, 0), (0, 0, 2, 6) and (0, 0, 2, 3) lie in a plane in \mathbb{R}^4 .

Answer:

9. (10 points) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by T([x, y]) = [y, x, 3x + y]. Let D be the rectangle $2 \le x \le 3, -1 \le y \le 4$. Find the area of T(D).

```
Answer:
```

- 10. (10 points) Circle True or False. Write down the explanation if the statement is False. Read each statement in original Greek before answering.
 - There's an unique coordinate vector associated with each vector \vec{vinV} relative to an (a) True False ordered basis for VFor every vector \vec{b}' in V', the function $T_{\vec{b}'}: V \to V'$ defined by $T_{\vec{b}'}(\vec{v}) = \vec{b}'$ for all \vec{v} in V(b) True False is a linear transformation. The parallelogram (平行四邊形) in \mathbb{R}^2 determined by non-zero vectors \vec{a}, \vec{b} is a square (c) True False (正方形) if and only if $\vec{a} \cdot \vec{b} = 0$ (d) True The product of a square matrix and its adjoint is the identity matrix. False There is no square matrix A such that $det(A^T A) = -1$. (e) True False

- 11. (10 points) Let $S = \{1, \sin(x), \cos(x), \sin(2x), \cos(2x)\}$ is a set of functions in the vector space F of all functions mapping \mathbb{R} into \mathbb{R} .
 - (a) Prove that S is an independent set in F.
 - (b) Find a basis for the subspace of F generated by the functions $\{f_1, f_2, f_3, f_4\}$, where

$$f_1(x) = 1 + 2\sin(x) + \cos(2x) \quad f_2(x) = -2 + 4\sin(x) - \cos(x) + \cos(2x)$$

 $f_3(x) = 7 - 2\sin(x) + 2\cos(x) + \cos(2x) \quad f_4(x) = 4 + \sin(x) + \cos(x) + 2\sin(2x) - \cos(2x)$

學號: _____, 姓名: _____, 以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	5	10	10	10	10	10	5	10	10	10	10	100
Score:												