應數一線性代數 2021 秋, 期末考 解答

本次考試共有7頁(包含封面),有11題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓: **誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

1. (5 points) Find \mathbf{v}_B , which is the coordinate vector of the given vector $\mathbf{v} = [1, 2, -2]$ relative to the indicated ordered basis $\mathbf{B} = \{[1, 1, 1], [1, 2, 0], [1, 0, 1]\}.$

Ch 3-3 example 2

 $\vec{v}_B = [-4, 3, 2]$

2. (10 points) Find the coordinate vector of polynomial $4x^3 + 5x^2 + x$ relative to the ordered basis $B = ((x + 1)^3, (x + 1)^2, (x + 1), 1)$ of the vector space P_3 of polynomials of degree at most 3. Let $\vec{p} = 4x^3 + 5x^2 + x$

[1	0	0	0	4		[1	0	0	0	4
3	1	0	0	5		0	1	0	0	-7
3	2	1	0	1	~	0	0	1	0	3
1	1	1	1	0		0	0	0	1	$\begin{bmatrix} 4 \\ -7 \\ 3 \\ 0 \end{bmatrix}$

 $\vec{p}_B = [4, -7, 3, 0]$

3. (10 points) Let $V = sp(e^{2x}, e^{4x}, e^{8x})$, $V' = sp(e^{3x}, e^{7x}, e^{9x})$ are the subspaces of the vector space of all realvalued functions with domain \mathbb{R} , and let $B = (e^{2x}, e^{4x}, e^{8x})$, $B' = (e^{3x}, e^{7x}, e^{9x})$. Let $T : V \longrightarrow V'$ be the linear transformation having the given matrix A as matrix representation relative to B, B'.

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 3 & 1 \\ -2 & 1 & 3 \end{bmatrix},$$

Find $T(ae^{2x} + be^{4x} + ce^{8x}) = (2a + 2b)e^{3x} + (3b + c)e^{7x} + (-2a + b + 3c)e^{9x}$

2	-	0	$\begin{bmatrix} a \end{bmatrix}$		2a+2b
0	3	1	b	=	3b+c
-2	1	3	c		-2a+b+3c

- 4. (10 points) Suppose that A is a 4×4 matrix with determinant 3.
 - (a) Find det $(5A) = 3 * 5^4 = 1875$
 - (b) Find $det(A^{-1}) = 1/3$
 - (c) Find det $(2A^{-1}) = \frac{2^4/3 = 16/3}{2^4/3}$
 - (d) Find det($(2A)^{-1}$) = _____1/(3 * 2^4) = 1/48

5. (10 points) Suppose that A is a 3×3 matrix with row vectors \vec{a}, \vec{b} , and \vec{c} , and that det(A) = 3. Find the determinant of the matrix having $2\vec{a} + 3\vec{b} + 2\vec{c}, \vec{c}, \vec{a}$ as its row vectors

 $Determinant = ___9$

$$2\vec{a} + 3\vec{b} + 2\vec{c}$$

$$\vec{c}$$

$$\vec{a}$$

$$= \begin{vmatrix} 3\vec{b} \\ \vec{c} \\ \vec{a} \end{vmatrix} (R_1 \to R_1 - 2 \times R_3)$$

$$= \begin{vmatrix} 3\vec{b} \\ \vec{c} \\ \vec{a} \end{vmatrix} (R_1 \to R_1 - 2 \times R_2)$$

$$= 3 \begin{vmatrix} \vec{b} \\ \vec{c} \\ \vec{a} \end{vmatrix} (R_1 \to \frac{1}{3}R_1)$$

$$= -3 \begin{vmatrix} \vec{a} \\ \vec{c} \\ \vec{b} \end{vmatrix} (R_1 \to R_3)$$

$$= -3 \begin{vmatrix} \vec{a} \\ \vec{c} \\ \vec{b} \end{vmatrix} (R_1 \leftrightarrow R_3)$$

$$= 3 \begin{vmatrix} \vec{a} \\ \vec{c} \\ \vec{c} \end{vmatrix} (R_2 \leftrightarrow R_3)$$

$$= 3 \times 3 = 9$$

6. (10 points)

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 0.6 & 0.2 & -0.1 \\ -0.8 & 0.4 & 0.3 \end{bmatrix}$$
, and the adjoint matrix of A =

The inverse of A =
$$\begin{bmatrix} 0.6 & 0.2 & -0.1 \\ -0.8 & 0.4 & 0.3 \\ 0.4 & -0.2 & 0.1 \end{bmatrix}$$
, and the adjoint matrix of A =
$$\begin{bmatrix} 6 & 2 & -1 \\ -8 & 4 & 3 \\ 4 & -2 & 1 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} 0.6 & 0.2 & -0.1 \\ -0.8 & 0.4 & 0.3 \\ 0.4 & -0.2 & 0.1 \end{bmatrix}$$
, det(A) = 10

7. (5 points) Let $\vec{a} = \vec{i} - 2\vec{k}, \ \vec{b} = -\vec{i} + 3\vec{j}, \ \vec{c} = \vec{i} + 2\vec{j} + \vec{k}.$ Find $\vec{a} \cdot (\vec{b} \times \vec{c}) = \underline{13}$

 $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot [3, 1, -5] = 13$

8. (10 points) Find out whether points (0, 0, 0, 0) (2, 1, 0, 0), (3, -2, 0, 0), (0, 0, 2, 6) and (0, 0, 2, 3) lie in a plane in \mathbb{R}^4 .

Answer: the given 4 points are NOT lie in a plane.

Assume points O = (0, 0, 0, 0), A = (2, 1, 0, 0), B = (3, -2, 0, 0), C = (0, 0, 2, 6) and D = (0, 0, 2, 3).

$$\overrightarrow{OA} = [2, 1, 0, 0], \ \overrightarrow{OB} = [3, -2, 0, 0], \ \overrightarrow{OC} = [0, 0, 2, 6], \ \overrightarrow{OD} = [0, 0, 2, 3]$$

The volume generated by (OA), (OB), (OC), (OD) is

$$\begin{vmatrix} 2 & 1 & 0 & 0 \\ 3 & -2 & 0 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix} \cdot \begin{vmatrix} 2 & 6 \\ 2 & 3 \end{vmatrix} = (-4-3)(6-12) = 42 \neq 0$$

Hence the given 4 points are NOT lie in a plane.

9. (10 points) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by T([x, y]) = [y, x, 3x + y]. Let D be the rectangle $2 \le x \le 3, -1 \le y \le 4$. Find the area of T(D).

Answer: $5\sqrt{11}$.

Area of D is (3-2) * (4-(-1)) = 5.

The standard matrix representation of T is

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 3 & 1 \end{bmatrix}$$
$$\sqrt{\det(A^T A)} = \sqrt{11}$$

The area of $T(D) = 5\sqrt{11}$

10. (10 points) Circle True or False. Write down the explanation if the statement is False. Read each statement in original Greek before answering.

- (a) **True** False There's an unique coordinate vector associated with each vector $\vec{v}inV$ relative to an ordered basis for V
- (b) True **False** For every vector \vec{b}' in V', the function $T_{\vec{b}'}: V \to V'$ defined by $T_{\vec{b}'}(\vec{v}) = \vec{b}'$ for all \vec{v} in V is a linear transformation.
- (c) True **False** The parallelogram (平行四邊形) in \mathbb{R}^2 determined by non-zero vectors \vec{a}, \vec{b} is a square (正方形) if and only if $\vec{a} \cdot \vec{b} = 0$
- (d) True **False** The product of a square matrix and its adjoint is the identity matrix.
- (e) **True** False There is no square matrix A such that $det(A^T A) = -1$.

(b) $T_{\vec{h}'}(\vec{v}) = \vec{b}', \ T_{\vec{h}'}(2\vec{v}) = \vec{b}' \neq 2T_{\vec{h}'}(\vec{v}) = 2\vec{b}'$

- (c) $\vec{a} = [1,0], \vec{b} = [0,2] \Rightarrow \vec{a} \cdot \vec{b} = 0$, but it's not a square.
- (d) By Theorem 4.6: A * adj(A) = det(A)I

- 11. (10 points) Let $S = \{1, \sin(x), \cos(x), \sin(2x), \cos(2x)\}$ is a set of functions in the vector space F of all functions mapping \mathbb{R} into \mathbb{R} .
 - (a) Prove that S is an independent set in F.
 - (b) Find a basis for the subspace of F generated by the functions $\{f_1, f_2, f_3, f_4\}$, where

$$f_1(x) = 1 + 2\sin(x) + \cos(2x) \quad f_2(x) = -2 + 4\sin(x) - \cos(x) + \cos(2x)$$

$$f_3(x) = 7 - 2\sin(x) + 2\cos(x) + \cos(2x) \quad f_4(x) = 4 + \sin(x) + \cos(x) + 2\sin(2x) - \cos(2x)$$

(a) Assume there exists $a, b, c, d, e \in \mathbb{R}$ such that $a + b\sin(x) + c\cos(x) + d\sin(2x) + e\cos(2x) = 0$.

by (1), (2), we have $c = 0, \Rightarrow a + e = 0$ -(5)

by (3), (4), we have
$$b = 0, \Rightarrow a - e = 0$$
 —(6)

by (5), (6), we have a = e = 0.

Since a = b = c = e = 0, we have $d\sin(2x) = 0$ for all $x, \Rightarrow d = 0$.

Hence, we have a = b = c = d = e = 0. Therefore, its independent.

(b)

1	-2	7	4		1	0	3	0	
2	4	-2	1		0	1	-2	0	
0	-1	2	1	\sim	0	0	0	0	
0	0	0	2		0	0	0 0 0	1	
1	1	1	-1		0	0	0	0	

Hence, the basis is $\{f_1, f_2, f_4\}$

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	5	10	10	10	10	10	5	10	10	10	10	100
Score:												