應數一線性代數 2022 春, 期末考

考試時間: 2022/06/23, 09:10 - 12:00,

收卷截止時間:12:10

考卷繳交位置:Google Classroom

考試須知:

- 需要開鏡頭麥克風。鏡頭需要看得到你的身邊,你在作答的紙面,還有你在使用的電子資源的畫面(例如電腦 螢幕或平板螢幕)。我不需要直接閱讀螢幕內容,我只要看看畫面的形狀色塊,確定你在看什麼就好。
- 請將紙面答案卷掃成一份 pdf 檔,畫面請清晰並且轉正。第一頁左上寫明姓名學號,每一題前面註明題號,頁 面請按照題號順序編排不要跳號。
- 注意事先準備充足的紙張。考試途中不能向外求助更多的計算紙。

- 1. (10 points) Given the coordinate vector $\vec{v}_B = \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix}$. Please find the \vec{v} and \vec{v}'_B when the ordered basis B and
 - B' for P_2 are

$$B = (x^2 - x, 2x + 1, -x - 5), B' = (1, (1 + x), (1 + x)^2)$$

Answer: $\vec{v} =$ _____, $\vec{v}'_B =$ _____.

2. (10 points) Express $\frac{z}{w}$ in the form a + bi, where $a, b \in \mathbb{R}$, if

$$z = 6 - i, w = 2 - 3i$$

Answer: $\frac{z}{w} =$ _____.

- 3. (10 points) Find the five fifth roots of -32. (need not simplify)
- 4. (10 points) Let A is an 3×3 complex matrix with $\det(A) = 2 + 5i$. Please the value for $\det(iA)$ and $\det(A^*)$. Answer: $\det(iA) =$ _____, $\det(A^*) =$ _____.
- 5. (10 points) Find the matrix representations $R_{B,B}$, $R_{B',B'}$ and an invertible C such that $R_{B',B'} = C^{-1}R_{B,B}C$ for linear transformation $T: P_2 \to P_2$ defined by T(p(x)) = p(x-1) + 2p(x), $B = (x^2, x, 1)$, $B' = (x^2 1, x 3, 2)$. Answer: $C_{BB'} =$ ______, $C_{B'B} =$ ______, $R_{B'B'} =$ ______ and $R_{BB} =$ ______. Is $C = C_{BB'}$ or $C_{B'B}$? ______.
- 6. (10 points) Use the process in Schur's Lemma to find an unitary matrix U such that $U^{-1}AU = R$ is an upper triangular.

$$A = \begin{bmatrix} 5 & 1 & -20\\ 0 & 1 & 3\\ 0 & 2 & -1 \end{bmatrix}$$

Answer: U =_____.

7. (10 points) Find a Jordan canonical form and a Jordan basis for the matrix A.

$$A = \begin{bmatrix} 3 & 0 & 2 & -1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5i & 0 & 0 \\ 0 & 0 & 0 & 0 & 5i & 0 \\ 0 & 0 & 0 & 0 & 0 & 5i \end{bmatrix}$$

Answer: Jordan canonical form =_____, Jordan basis = _____

8. (10 points) Prove or disprove the following:

$$det(C_{BB'}) = 1$$
 if and only if $B = B'$

- 9. (10 points) Answer the following question.
 - 1. Find the eigenvalues of the given Matrix J.
 - 2. Give the rank and nullity of $(J \lambda)^k$ for each eigenvalue λ of J and for every positive integer k.
 - 3. Draw schemata of the strings of vectors in the standard basis arising from the Jordan blocks in J.
 - 4. For each standard basis vector \vec{e}_k , express $J\vec{e}_k$ as a linear combination of vectors in the standard basis.

[4	1	0	0	0	0	0	0	0]
0	4	0	0	0	0	0	0	0
0	0	9i	1	0	0	0	0	0
0	0	0	9i	0	0	0	0	0
0	0	0	0	9i	1	0	0	0
0	0	0	0	0	9i	1	0	0
0	0	0	0	0	0	9i	0	0
0	0	0	0	0	0	0	4	0
0	0	0	0	0	0	0	0	4

10. (10 points) Prove or disprove whether every unitarily diagonalizable matrix is Hermitian.

11. (10 points) Find all $a \in \mathbb{C}$, $b \in \mathbb{R}$ such that the following matrix is unitary diagonalizable.

$$\begin{bmatrix} a & -2i \\ bi & 1-i \end{bmatrix}$$

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	10	10	10	10	10	10	10	10	10	10	10	110
Score:												