應數一線性代數 2022 秋, 期末考

本次考試共有8頁(包含封面),有10題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓:**誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

1. (10 points) (a) Determine the set S_1 of all functions f such that f(0) = 1 is a subspace in the vector space F of all functions mapping \mathbb{R} into \mathbb{R} .

Answer: Is S_1 a subspace of F? _____

(b) Determine the set of all functions f such that f(1) = 0 is a subspace in the vector space F of all functions mapping \mathbb{R} into \mathbb{R} .

Answer: Is S_2 a subspace of F?

2. (10 points) Find the area of the parallelogram (平行四邊形) in \mathbb{R}^3 determined by the vectors [2,-3,5] and [4,-5,1]

Answer: area = ____

3. (10 points) Find the coordinate vector of the given vector relative to the indicated ordered basis. $7x^3 + 3x^2 - 2x + 3$ in P_3 relative to $(x^2 + x, x^3 + 2x - 1, x^3 + x, 2x^2 + 1)$ Answer: the coordinate vector is ______ 4. (10 points) Let $T: P_2 \to P_3$ be defined by T(p(x)) = (x-2)p(x+1), the ordered basis for P_2 is $B = (x^2, x, 1)$ and the ordered basis for P_3 is $B' = (x^3, x^2, x, 1)$. Fine the standard matrix representation A of T relative to the ordered bases B and B'.

Answer: (a) A =_____

(b) $T(-2x^2 - 4x + 3) =$ _____

(c) The ker(T) = _____

5. (10 points) Let V and V' be vector spaces with ordered bases B = ([1,3,-2], [4,1,2], [-1,1,0]) and B' = ([1,0,1,0], [2,1,1,-1], [0,1,1,-1], [2,0,3,1]), respectively, and let $T : V \longrightarrow V'$ be the linear transformation having the given matrix A as matrix representation relative to B, B'. For a vector \vec{v} such that $\vec{v}_B = [1,-3,10]$, find $T(\vec{v})$.

$$A = \begin{bmatrix} 0 & 4 & -1 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix},$$

Answer: If $\vec{v}_B = [1, -3, 10]$, then $\vec{v} = _$ ______ $T(\vec{v}) = _$ ______

- 6. (10 points) Suppose that A is a 5×5 matrix with determinant 2.

 - (d) Find $\det((7A)^T) =$ ______

7. (10 points)

$$A = \begin{bmatrix} 0 & 3 & 1 \\ 5 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$$

The inverse of A =_____, and the adjoint matrix of A =______

8. (10 points) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by T([x, y]) = [y, x, x + y]. Find the volume of the image under T of the disk $x^2 + y^2 \le 16$.

```
Answer: ____
```

9. (10 points) Show that $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$ for any vectors \vec{a}, \vec{b} and \vec{c} in \mathbb{R}^3 .

- 10. (10 points) Circle each of the following True or False. Please give a counterexample (反例) for the false statement and give an explain (解釋) for the true statement.
 - (a) True False A linear transformation $T: V \to V'$ carries a pair $\vec{v}, -\vec{v}$ in V into a pair $\vec{v}', -\vec{v}'$ in V'

(b) True False The product of a square matrix and its adjoint is the identity matrix.

(c) True False There is no square matrix A such that $det(A^T A) = -1$.

(d) True False The determinant of 3×3 matrix is zero if the points in \mathbb{R}^3 given by the rows of the matrix lie in a plane.

(e) True False Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. The image under T of an n-box in \mathbb{R}^n of. volume > 0 is a n-box in \mathbb{R}^n of volume > 0

學號:	<u> </u>	,以下由閱卷人員填寫
字 5/元:	, XI 12 ;	,以「口闶仓八只俱荷

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	10	10	10	10	10	10	10	10	10	10	100
Score:											