應數一線性代數 2022 秋, 期末考 解答

本次考試共有 9 頁 (包含封面),有 10 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓:**誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

1. (10 points) Find the area of the parallelogram(平行四邊形) in \mathbb{R}^3 determined by the vectors [2, -3, 5] and [4, -5, 1]

Answer: area = $\sqrt{812}$

$\mathbf{Solution:}$

Let $\vec{a} = [2, -3, 5]$ and $\vec{b} = [4, -5, 1]$, then the area is $\|\vec{a} \times \vec{b}\|$.

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & 5 \\ 4 & -5 & 1 \end{vmatrix} = \vec{i} \begin{vmatrix} -3 & 5 \\ -5 & 1 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & 5 \\ 4 & 1 \end{vmatrix} + \vec{k} \begin{vmatrix} 2 & -3 \\ 4 & -5 \end{vmatrix} = [22, 18, 2]$$

The length of [22, 18, 2] is $\sqrt{812}$

2. (10 points) Find the coordinate vector of the given vector relative to the indicated ordered basis. $7x^3 + 3x^2 - 2x + 3$ in P_3 relative to $(x^2 + x, x^3 + 2x - 1, x^3 + x, 2x^2 + 1)$ Answer: the coordinate vector is [-15, 6, 1, 9]

 $\mathbf{Solution:}$

$$\begin{bmatrix} 0 & 1 & 1 & 0 & | & 7 \\ 1 & 0 & 0 & 2 & 3 \\ 1 & 2 & 1 & 0 & -2 \\ 0 & -1 & 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & | & -15 \\ 0 & 1 & 0 & 0 & | & 6 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 9 \end{bmatrix}$$

3. (10 points) Let $T: P_2 \to P_3$ be defined by T(p(x)) = (x-2)p(x+1), the ordered basis for P_2 is $B = (x^2, x, 1)$ and the ordered basis for P_3 is $B' = (x^3, x^2, x, 1)$. Fine the standard matrix representation A of T relative to the ordered bases B and B'.

Answer: (a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & -1 & 1 \\ -2 & -2 & -2 \end{bmatrix}$$

(b) $T(-2x^2 - 4x + 3) = -2x^3 - 4x^2 + 13x + 6$

(c) The $ker(T) = \{0\}$

Solution :

$$T(x^{2}) = (x - 2)(x + 1)^{2} = x^{3} - 3x - 2,$$

$$T(x) = (x - 2)(x + 1) = x^{2} - x - 2,$$

$$T(1) = x - 2$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & -1 & 1 \\ -2 & -2 & -2 \end{bmatrix}, \ rref(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

By the rref(A), we find the $ker(T)_B = \{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \}$, i.e. $ker(T) = \{0x^2 + 0x + 0 = 0\}$ Let $p(x) = -2x^2 - 4x + 3$, $p(x)_B = \begin{bmatrix} -2\\-4\\3 \end{bmatrix}$.

$$T(p)_{B'} = Ap_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & -1 & 1 \\ -2 & -2 & -2 \end{bmatrix} \begin{bmatrix} -2 \\ -4 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \\ 13 \\ 6 \end{bmatrix}$$

 $T(p) = -2x^3 - 4x^2 + 13x + 6$

4. (10 points) Let V and V' be vector spaces with ordered bases B = ([1,3,-2], [4,1,2], [-1,1,0]) and B' = ([1,0,1,0], [2,1,1,-1], [0,1,1,-1], [2,0,3,1]), respectively, and let $T : V \longrightarrow V'$ be the linear transformation having the given matrix A as matrix representation relative to B, B'. For a vector \vec{v} such that $\vec{v}_B = [1,-3,10]$, find $T(\vec{v})$.

$$A = \begin{bmatrix} 0 & 4 & -1 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix},$$

Answer: If $\vec{v}_B = [1, -3, 10]$, then $\vec{v} = _[-21, 10, -8]$. $T(\vec{v}) = _[28, 30, 29, -23]$.

 $\mathbf{Solution}:$

$$\vec{v} = \begin{bmatrix} 1 & 4 & -1 \\ 3 & 1 & 1 \\ -2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 10 \end{bmatrix} = \begin{bmatrix} -21 \\ 10 \\ -8 \end{bmatrix}$$

$$\vec{1} = \begin{bmatrix} 28 \\ 30 \\ 29 \\ -23 \end{bmatrix}$$

- 5. (10 points) Suppose that A is a 5×5 matrix with determinant 2.
 - (a) Find det $(3A) = 3^5 \times 2 = 486$.
 - (b) Find $det(A^{-1}) = \underline{1/2}$.
 - (c) Find det $(7A^{-1}) = 7^{5}/2 = 16807/2 = 8403.5$.
 - (d) Find $\det((7A)^T) = \underline{7^5 \times 2 = 33614}$.

6. (10 points)

$$A = \begin{bmatrix} 0 & 3 & 1 \\ 5 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$$

The inverse of $A =$	$\frac{1}{6}$	2	2	-4	, and the adjoint matrix of \mathbf{A} =	2	2	-4]
		-1	-1	5		-1	-1	5
	0	9	3	-15		9	3	-15

Solution :

 $\det(A) = 6.$

7. (10 points) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by T([x, y]) = [y, x, x + y]. Find the volume of the image under T of the disk $x^2 + y^2 \le 16$.

Answer: $16\sqrt{3\pi}$.

Solution :

The standard matrix representation of ${\cal T}$ is

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$
$$\det(A^T A) = \det(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}) = \det(\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}) = 3$$

Let $D = \{(x, y) \mid x^2 + y^2 \le 16\}$, which is a disk with radius 4. Therefore, the volume of D is 16π and the volume of $T(D) = \sqrt{\det(A^T A)} \cdot 16\pi = 16\sqrt{3}\pi$.

8. (10 points) Show that $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$ for any vectors \vec{a}, \vec{b} and \vec{c} in \mathbb{R}^3 .

Solution :

See section 4-1 problem 59.

- 9. (10 points) Circle each of the following True or False. Please give a counterexample (反例) for the false statement and give an explain (解釋) for the true statement.
 - (a) **True** False A linear transformation $T: V \to V'$ carries a pair $\vec{v}, -\vec{v}$ in V into a pair $\vec{v}', -\vec{v}'$ in V'

Solution : Let $\vec{v}' = T(\vec{v})$

$$T(-\vec{v}) = T((-1)\vec{v}) = (-1)T(\vec{v}) = -T(\vec{v}) = -\vec{v}'$$

(b) True **False** The product of a square matrix and its adjoint is the identity matrix. **Solution :**

$$A \cdot adj(A) = \det(A) \cdot I$$

(c) **True** False There is no square matrix A such that $det(A^T A) = -1$. Solution :

 $\det(A^T A) = \det(A^T) \det(A) = \det(A)^2 \neq -1$

(d) True **False** The determinant of 3×3 matrix is zero if the points in \mathbb{R}^3 given by the rows of the matrix lie in a plane.

Solution :

A: (1,0,0), B = (0,1,0), C = (0,0,1) are lie in the plane x + y + z = 1. However,

1	0	0	
0	1	0	= 1
0	0	1	

(e) True **False** Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. The image under T of an n-box in \mathbb{R}^n of. volume > 0 is a n-box in \mathbb{R}^n of volume > 0

Solution :

 $T: \mathbb{R}^n \to \mathbb{R}^n$ with $T(\vec{v}) = \vec{0}$ is a linear transformation. However, the image under T of any n-box is just $\vec{0}$, which the volume is 0.

p.s. compare this statement in the section 4-4 problem 35(c), they are different.

10. (10 points) (a) Determine the set S_1 of all functions f such that f(0) = 1 is a subspace in the vector space F of all functions mapping \mathbb{R} into \mathbb{R} .

Answer: Is S_1 a subspace of F? <u>NO</u>

Solution :

Let $f(x), g(x) \in S_1$, then $(f \oplus g)(0) = f(0) + g(0) = 1 + 1 = 2 \neq 1$. Therefore, $f \oplus g \notin S$ and S_1 is NOT a subspace of F.

(b) Determine the set of all functions f such that f(1) = 0 is a subspace in the vector space F of all functions mapping \mathbb{R} into \mathbb{R} .

Answer: Is S_2 a subspace of F? <u>Yes</u>

Solution :

Let $f(x), g(x) \in S_2$, then $(f \oplus g)(1) = f(1) + g(1) = 0 + 0 = 0$. Thus, $f \oplus g \in S$ and S_1 . Let $f(x) \in S_2$ and $r \in \mathbb{R}$, then $(r \otimes f)(1) = r \cdot f(1) = r \cdot 0 = 0$ Thus, $r \otimes f \in S_2$. Therefore S_2 is a subspace of F.

學號:	、姓名:	以下由閱卷人員填寫
チョル・	, XL'Ш ·	· 3 - 田凡也八只头向

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	10	10	10	10	10	10	10	10	10	10	100
Score:											