應數一線性代數 2023 春, 期中考

本次考試共有 10 頁 (包含封面),有 11 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一及最後一頁填上姓名學號,並在每一頁的最上方屬名,避免釘書針斷裂後考卷遺失。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。
 沒有計算過程,就算回答正確答案也不會得到滿分。
 答卷請清楚乾淨,儘可能標記或是框出最終答案。

高師大校訓:**誠敬宏遠**

誠,一生動念都是誠實端正的。 **敬**,就是對知識的認真尊重。 **宏**,開拓視界,恢宏心胸。 **遠**,任重致遠,不畏艱難。

請尊重自己也尊重其他同學,考試時請勿東張西望交頭接耳。

1. (10 points) Let

$$A = \begin{bmatrix} 4 & -2 & 1 \\ -2 & 7 & -2 \\ 1 & -2 & 4 \end{bmatrix}$$

Find (if exists) an invertible matrix C and a diagonal matrix D such that $D = C^{-1}AC$. Also, find the eigenvalues of A^{100} .

(1) Is A diagonalizable? _____. If so, C= _____, D_1 =_____.

If A is not diagonalizable, why?

2. (10 points) Let

$$A = \begin{bmatrix} 4 & -2 & 1 \\ -2 & 7 & -2 \\ 1 & -2 & 4 \end{bmatrix}$$

Find (if exists) an orthogonal matrix C and a diagonal matrix D such that $D = C^{-1}AC$. Also, find the eigenvalues of A^{100} .

(1) Is A orthogonal diagonalizable? If so, C =_____, D =_____.

If A is not diagonalizable, why? ______.

(2) The eigenvalue of A are _____. The eigenvalue of A^k are _____.

(3)	$A^k =$	(不需化簡)
(-)		

應數一線性代數	期中考	- Page 4 of 10
	$x_1' = 4x_1 - $	$2x_2 + x_3$

.

	$x_1 = 4x_1 - 2x_2 + x_3$
3. (5 points) Solve the system \langle	$x_2' = -2x_1 + 7x_2 - 2x_3$
	$x_3' = x_1 - 2x_2 + 4x_3$

Answer: _____

4. (10 points) Let

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

Factor A in the form A = QR, where Q is an orthogonal matrix and R is an upper-triangular invertible matrix.

Answer: Q=_____, R=_____.

- 應數一線性代數
 期中考
 - Page 6 of 10
 04/13/2023

 5. (15 points)
 (1) Find the projection matrix P that project vectors in \mathbb{R}^3 on W = sp([1,0,-1],[1,1,1]).
 - (2) Given $\vec{b} = [3, 2, 1]$, please find the projection \vec{b}_W .
 - (3) If $\vec{b}_W = \alpha[1, 0 1] + \beta[1, 1, 1]$, find α, β .

Answer: P =_____, $\vec{b}_W =$ _____, $\alpha =$ _____, $\beta =$ _____.

6. (10 points) Find the formula for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that reflects in the line 5x + 7y = 0.

Answer: T([x, y]) =

7. (10 points) Find the least squares straight line fit to the five points (-3, 2.7), (-1, 3.5), (0,4), (1, 4.5), (3, 5.3) and use it to approximate the fifth points (2, a).

Answer: the line equation =______, a=_____.

應數一線性代數	期中考	- Page 8 of 10	04/13/2023
8. (10 points) Circle True of	or False and then	prove (證明) or disprove (反	え駁) it. Read each state-
ment in original Greek b	efore answering.	*** 只圈對錯,沒有論述一	律不給分 ***

(a) True False An $n \times n$ symmetric matrix A is a projection matrix if and only if $A^2 = I$.

(b) True False Every invertible matrix is diagonalizable.

(c) True False There is a unique polynomial fraction of degree k with graph passing through any k points in \mathbb{R}^2 having distinct first coordinates.

(d) True False Every vector in a vector space V is an eigenvector of the identity transformation of V into V.

(e) True False Given W is a subspace of \mathbb{R}^n . If a vector \vec{v} belongs to both W and W^{\perp} , then $\vec{v} = \vec{0}$.

9. (10 points) Show that the real eigenvalue of an orthogonal matrix must be equal to 1 or -1.

Hint: Think in terms of linear transformations.

10. (10 points) Let P be the projection matrix for k-dimensional subspace of \mathbb{R}^n . Please find all eigenvalues of P and also find the algebraic multiplicity of each eigenvalues.

11. (10 points) If λ is an eigenvalue of an invertible matrix A with \vec{v} as a corresponding eigenvector, please prove that $\lambda \neq 0$ and $1/\lambda$ is an eigenvalue of A^{-1} , again with \vec{v} as a corresponding eigenvector.

學號: _____, 姓名: _____, 以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	10	10	5	10	15	10	10	10	10	10	10	110
Score:												