應數一線性代數 2023 春, 期中考 解答

本次考試共有 10 頁 (包含封面),有 11 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一及最後一頁填上姓名學號,並在每一頁的最上方屬名,避免釘書針斷裂後考卷遺失。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。
 沒有計算過程,就算回答正確答案也不會得到滿分。
 答卷請清楚乾淨,儘可能標記或是框出最終答案。

高師大校訓:**誠敬宏遠**

誠,一生動念都是誠實端正的。**敬**,就是對知識的認真尊重。 **宏**,開拓視界,恢宏心胸。**遠**,任重致遠,不畏艱難。

請尊重自己也尊重其他同學,考試時請勿東張西望交頭接耳。

1. (10 points) Let

$$A = \begin{bmatrix} 4 & -2 & 1 \\ -2 & 7 & -2 \\ 1 & -2 & 4 \end{bmatrix}$$

Find (if exists) an invertible matrix C and a diagonal matrix D such that $D = C^{-1}AC$. Also, find the eigenvalues of A^{100} .

(1) Is A diagonalizable? YES!. If so, C=
$$\begin{bmatrix} 1 & 1 & 1 \\ -2 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$
, $D_1 = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

If A is not diagonalizable, why? _____.

Solution:

Follow 課本 5-2 example 3, 4 and Theorem 5.1

Follow 108-2 midterm problem 1.

2. (10 points) Let

$$A = \begin{bmatrix} 4 & -2 & 1 \\ -2 & 7 & -2 \\ 1 & -2 & 4 \end{bmatrix}$$

Find (if exists) an orthogonal matrix C and a diagonal matrix D such that $D = C^{-1}AC$. Also, find the eigenvalues of A^{100} .

(1) Is A orthogonal diagonalizable? If so, $C =$	$\begin{bmatrix} 1/\sqrt{6} & 1/\sqrt{3} \\ -2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$	$0/\sqrt{(2)}$,	D =	$\begin{bmatrix} 9 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
-				

If A is not diagonalizable, why? _____.

(2) The eigenvalue of A are 9,3. The eigenvalue of A^k are $9^k, 3^k$.

(3) $A^k = _$. (不需化簡)

Solution :

Follow 課本 5-2 example 3, 4 and Theorem 5.1

.

	0
	$x_1' = 4x_1 - 2x_2 + x_3$
3. (5 points) Solve the system \langle	$x_2' = -2x_1 + 7x_2 - 2x_3$
	$x_3' = x_1 - 2x_2 + 4x_3$

	$\begin{bmatrix} x_1 \end{bmatrix}$	$\left[k_1 e^{9t}\right]$	1	1	1	$k_1 e^{9t}$		$k_1 e^{9t} + k_2 e^{3t} + k_3 e^{3t}$
Answer:	$ x_2 = C$	$k_2 e^{3t} =$	-2	1	0	$k_2 e^{3t}$	=	$-2k_1e^{9t} + k_2e^{3t}$
	$\begin{bmatrix} x_3 \end{bmatrix}$	$\left\lfloor k_3 e^{3t} \right\rfloor$	1	1	-1	$k_3 e^{3t}$		$\left[k_1e^{9t} + k_2e^{3t} - k_3e^{3t}\right]$

Solution :

Follow 課本 5-3 example 3

Follow 109-2 midterm problem 1.

4. (10 points) Let

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

Factor A in the form A = QR, where Q is an orthogonal matrix and R is an upper-triangular invertible matrix.

Answer: Q=
$$\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{-\sqrt{6}}{6} \\ 0 & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} \\ \frac{-\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{-\sqrt{6}}{6} \end{bmatrix} , R= \begin{bmatrix} \sqrt{2} & 0 & -\sqrt{2} \\ 0 & \sqrt{3} & \frac{\sqrt{3}}{3} \\ 0 & 0 & \frac{\sqrt{6}}{3} \end{bmatrix}$$

Solution :

Follow 課本 6-2 example 5.

Follow 111-2 quiz 6.

Follow 109-2 midterm problem 6.

 應數一線性代數
 期中考 解答 - Page 6 of 10
 04/13/2023

 5. (15 points) (1) Find the projection matrix P that project vectors in \mathbb{R}^3 on W = sp([1, 0, -1], [1, 1, 1]).

- (2) Given $\vec{b} = [3, 2, 1]$, please find the projection \vec{b}_W .
- (3) If $\vec{b}_W = \alpha[1, 0 1] + \beta[1, 1, 1]$, find α, β .

Answer:
$$P = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$
, $\vec{b}_W = \underline{[3, 2, 1]}$, $\alpha = \underline{1}$, $\beta = \underline{2}$.

6. (10 points) Find the formula for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that reflects in the line 5x + 7y = 0.

Answer: $T([x, y]) = \frac{-1}{37} [12x - 35y, -35x - 12y]$.

Solution:

Follow 課本 5-2 example 2

Follow 109-2 midterm problem 2.

7. (10 points) Find the least squares straight line fit to the five points (-3, 2.7), (-1, 3.5), (0,4), (1, 4.5), (3, 5.3) and use it to approximate the fifth points (2, a).

Answer: the line equation = <u>0.44x + 4</u> , a= <u>4.88</u>.

Solution :

Follow 課本 6-5 example 1

8. (10 points) Circle True or False and then prove (證明) or disprove (反駁) it. Read each statement in original Greek before answering. *** 只圈對錯,沒有論述一律不給分 ***

(a) True **False** An $n \times n$ symmetric matrix A is a projection matrix if and only if $A^2 = I$.

Solution :

Section 6-4, problem 15h.

(b) True **False** Every invertible matrix is diagonalizable.

Solution :

Section 5-2, problem 13f.

(c) True **False** There is a unique polynomial friction of degree k with graph passing through any k points in \mathbb{R}^2 having distinct first coordinates.

Solution :

Section 6-5, problem 21b.

(d) True **False** Every vector in a vector space V is an eigenvector of the identity transformation of V into V.

Solution:

Section 5-1, problem 23i

(e) True False Given W is a subspace of ℝⁿ. If a vector v belongs to both W and W[⊥], then v = 0.
Solution:
上課證過

9. (10 points) Show that the real eigenvalue of an orthogonal matrix must be equal to 1 or -1.

Hint: Think in terms of linear transformations.

Solution :

Section 6-3, problem 27

10. (10 points) Let P be the projection matrix for k-dimensional subspace of \mathbb{R}^n . Please find all eigenvalues of P and also find the algebraic multiplicity of each eigenvalues.

 $\mathbf{Solution:}$

Section 6-4, problem 19

11. (10 points) If λ is an eigenvalue of an invertible matrix A with \vec{v} as a corresponding eigenvector, please prove that $\lambda \neq 0$ and $1/\lambda$ is an eigenvalue of A^{-1} , again with \vec{v} as a corresponding eigenvector.

Solution :

Section 5-1 # 28, 我上課有證過。

學號:	_
-----	---

__, 姓名: ______, **以下由閱卷人員填寫**

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	10	10	5	10	15	10	10	10	10	10	10	110
Score:												