應數一線性代數 2023 春, 期末考

本次考試共有 10 頁 (包含封面),有 11 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一及最後一頁填上姓名學號,並在每一頁的最上方屬名,避免釘書針斷裂後考卷遺失。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。
 沒有計算過程,就算回答正確答案也不會得到滿分。
 答卷請清楚乾淨,儘可能標記或是框出最終答案。

高師大校訓:**誠敬宏遠**

誠,一生動念都是誠實端正的。 **敬**,就是對知識的認真尊重。 **宏**,開拓視界,恢宏心胸。 **遠**,任重致遠,不畏艱難。

請尊重自己也尊重其他同學,考試時請勿東張西望交頭接耳。

1. (10 points) Express $\frac{z}{w}$ in the form a + bi, where $a, b \in \mathbb{R}$, if

z = -1 + i, w = 3 + 4i

Answer: $\frac{z}{w} =$ _____

2. (10 points) Find the five fifth roots of $\sin(30^\circ) + i\cos(30^\circ)$. (need not simplify)

3. (10 points) Let A is an 3×3 complex matrix with det(A) = 2 + 3i. Please the value for det(iA) and $det(A^*)$.

Answer: det(iA) =_____, $det(A^*) =$ _____, $det(A^2) =$ _____.

Answer: $\vec{v} =$ _____, $\vec{v}'_B =$ _____

5. (10 points) Find the matrix representations $R_{B,B}$, $R_{B',B'}$ and an invertible C such that $R_{B',B'} = C^{-1}R_{B,B}C$ for linear transformation $T : P_2 \to P_2$ defined by $T(p(x)) = \frac{d}{dx}p(x-1), B = (x^2, x, 1), B' = (x^2 - 1, x - 3, 2).$

 $C_{B,B'} =$ _____, $C_{B',B} =$ _____, $R_{B',B'} =$ _____ and $R_{B,B} =$ _____.

Is $C = C_{B,B'}$ or $C_{B',B}$?

應數一	線性	代數

應數一線性代數期末考- Page 5 of 1006/15/20236. (10 points) Find an unitary matrix U and a diagonal matrix D such that $D = U^{-1}AU$. Also find where

$$A = \begin{bmatrix} 2 & 0 & 1-i \\ 0 & -3 & 0 \\ 1+i & 0 & 1 \end{bmatrix}$$

Answer: D = _____, U = _____

7. (10 points) Find a Jordan canonical form and a Jordan basis for the matrix A

$$A = \begin{bmatrix} 2 & 5 & 0 & 0 & -1 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Answer: Jordan canonical form = ______, Jordan basis = ______ 8. (10 points) Find a polynomial in A that gives the zero matrix.

期末考

	4	1	0	$egin{array}{c} 0 \\ 0 \\ 1 \\ 9i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0	0	0	0	0
	0	4	0	0	0	0	0	0	0
	0	0	9i	1	0	0	0	0	0
	0	0	0	9i	0	0	0	0	0
A =	0	0	0	0	9i	1	0	0	0
	0	0	0	0	0	9i	1	0	0
	0	0	0	0	0	0	9i	0	0
	0	0	0	0	0	0	0	4	0
	0	0	0	0	0	0	0	0	4

- Page 7 of 10

Answer: _

9. (10 points) Prove that every 2×2 real matrix that is unitarily diagonalizable has one of the following forms: $\begin{bmatrix} a & b \\ b & d \end{bmatrix}$, $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, for $a, b, d \in \mathbb{R}$.

- 10. (30 points) Prove or disprove the following statement:
 - (a) every unitarily diagonalizable matrix is Hermitian.

(b) If U is unitary, then $(\bar{U})^{-1} = U^T$.

(c) every unitary matrix is normal.

(d) If $A^* = -A$, then A is normal.

(e) $\det(C_{BB'}) = 1$ if and only if B = B'.

(f) If $C_{B,B'}$ is an orthogonal matrix and B is an orthonormal basis, then B' is an orthonormal basis.

11. (10 points) Please give a $n \times n$ matrix (不需化簡,但需要理由) such that

(a) is diagonalizable but NOT a normal matrix.

(b) is diagonalizable but NOT unitarily diagonalizable.

(c) is unitarily diagonalizable matrix but NOT Hermitian.

(d) all eigenvalues of algebraic multiplicity 1 but NOT unitarily diagonalizable.

(e) two diagonalizable matrices having the same eigenvectors but NOT similar.

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	10	10	10	10	10	10	10	10	10	30	10	130
Score:												