應數一線性代數 2023 秋, 第一次期中考

本次考試共有 9 頁 (包含封面),有 14 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓:**誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

1. (10 points) (a) Find the inverse of the matrix A, if it exists, and (b) express the inverse matrix as a product of elementary matrices. $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$ Answer: (a) $A^{-1} =$ _____(b) _____

2. (10 points) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T([1,0,0]) = [2,4,0], T([1,1,0]) = [3,4,3], and T([1,2,3]) = [10,19,6]. Find T([4,-3,1]) =______

- 3. (5 points) Given $\vec{u} = [1, 3, -1], \ \vec{v} = [-2, 4, 1] \text{ and } \vec{w} = [13, -11, -8].$
 - Is $\overrightarrow{w} \in sp(\overrightarrow{u}, \overrightarrow{v})?$ (Yes / No) .

If so, write \vec{w} in the linear combination of \vec{v} and \vec{u} :

- 4. (5 points) Given two vectors $\vec{v} = [3, x, -1, 1]$ and $\vec{u} = [6, 2, -2, y]$. Find all $x, y \in \mathbb{R}$ so that
 - (a) \vec{v}, \vec{u} are parallel.
 - (b) \vec{v}, \vec{u} are perpendicular.

- 5. (5 points) Suppose that T is a linear transformation with standard matrix representation A, and that A is a 15×9 matrix such that the nullspace of A has dimension 3.
 - (a) What is the dimension of the range of T?_____
 - (b) What is the dimension of the kernel of T?_____

6.	(10 points) Consider the given linear system:
	$\begin{cases} x_1 - 2x_2 & + x_4 = 1 \end{cases}$
	$\begin{cases} x_1 & -x_3 + 2x_4 = 0 \end{cases}$
	$\begin{cases} x_1 - 2x_2 &+ x_4 = 1 \\ x_1 &- x_3 + 2x_4 = 0 \\ -2x_2 + x_3 + x_4 = -6 \end{cases}$
	(a) Write its associated augmented matrix.
	(b) Reduce the matrix to its reduced row-echelon form (rref).
	(c) Find the homogeneous solution of the linear system
	(c) Find the homogeneous solution of the linear system .
	(d) Find the general solution of the linear system

7. (10 points) Let a, b and c be scalar such that $abc \neq 0$. Prove that the plane ax + by + cz = 0 is a subspace of \mathbb{R}^3 .

_.

8. (10 points) Assume the matrix A can be row reduces to H, please answer the following questions.

$$A = \begin{bmatrix} 3 & 1 & -3 & 8 & 3 & 7 \\ -2 & -1 & 1 & -5 & 0 & -3 \\ 1 & 3 & 7 & 0 & 9 & 13 \\ 2 & 5 & 11 & 1 & -1 & 6 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & 1 \\ 0 & 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) the **rank** of matrix A, is ______

(b) a basis for the **row space** of A is _____

(c) a basis for the **column space** of A is _____

(d) a basis for the **nullspace** of A is _____

9. (10 points) Let $\vec{v_1}$ and $\vec{v_2}$ be two vectors in \mathbb{R}^n . Prove that $sp(\vec{v_1}, \vec{v_1} + \vec{v_2}) = sp(\vec{v_1} - \vec{v_2}, \vec{v_1} + \vec{v_2})$.

10. (10 points) Prove that the given relation holds for all matrices for which the expressions are defined.

 $(AB)^T = B^T A^T$

11. (15 points) Suppose the complete solution to the equation

$$A\vec{x} = \begin{bmatrix} 2\\4\\2 \end{bmatrix} \quad \text{is} \quad \vec{x} = \begin{bmatrix} 2\\0\\0 \end{bmatrix} + r \begin{bmatrix} 1\\1\\0 \end{bmatrix} + s \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

(a) The dimension of the row space of A =

(b) What is the matrix A? Answer: A =

(c) Find all possible \vec{b} so that $A\vec{x} = \vec{b}$ can be solved. Answer: $\vec{b} =$ ______

12. (5 points) Let A is an $n \times n$ matrix and $A\vec{x} = \vec{b}$ has solution for any $\vec{b} \in \mathbb{R}^n$, then the nullity of A is ______.

- 13. (15 points) Let A is an $m \times n$ matrix of rank r. Suppose $A\vec{x} = \vec{b}$ has no solution for some $\vec{b} \in \mathbb{R}^n$ and has infinity many solution for some other $\vec{b} \in \mathbb{R}^n$, then:
 - (a) Is it possible that the nullspace of A contains only the zero vector? (Yes / No), and why?

(b) Is it possible that the column space of A is all of \mathbb{R}^m ? (Yes / No), and why?

(c) Can there be a vector $\vec{b} \in \mathbb{R}^n$ for which $A\vec{x} = \vec{b}$ has exactly one solution? (Yes / No), and why?

- 14. (10 points) Circle each of the following True or False and then give a counterexample (反例) for the false statement.
 - 1. True False For all positive integers m and n, the nullity of an $m \times n$ matrix might be any number from 0 to n.
 - 2. True False The magnitude of $\vec{v} + \vec{w}$ must be at least as large as the magnitude of either \vec{v} or \vec{w} in \mathbb{R}^n .
 - 3. True False If T is a linear transformation, then $T(\vec{0}) = 0$.
 - 4. True False If $A^2 = I$, then $A = \pm I$.

5. True False Every function mapping \mathbb{R}^n into \mathbb{R}^m is a linear transformation.

<u> 嶨</u> 號.	姓夕.	,以下由閱卷人員填寫
字 5/元:	, ×⊥ʿ⊔・	,以一口风心八只头向

Question:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
Points:	10	10	5	5	5	10	10	10	10	10	15	5	15	10	130
Score:															