應數一線性代數 2023 秋, 第一次期中考 解答

本次考試共有 9 頁 (包含封面),有 14 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓:**誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

1. (10 points) (a) Find the inverse of the matrix A, if it exists, and (b) express the inverse matrix as a product of elementary matrices. $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$ Answer: (a) $A^{-1} = \begin{bmatrix} -5 & 2 \\ 3 & 1 \end{bmatrix}$ (b) $A^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} * \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$ (答案不唯一)

2. (10 points) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T([1,0,0]) = [2,4,0], T([1,1,0]) = [3,4,3], and T([1,2,3]) = [10,19,6]. Find T([4,-3,1]) = [7, 21, -9]

Solution :

T([0,1,0]) = T([1,1,0] - [1,0,0]) = [1,0,3] and $T([0,0,1]) = \frac{1}{3} (T([1,2,3]) - T([1,0,0]) - 2T([0,1,0])) = [2,5,0]$. Let A is the standard matrix representation of T.

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 0 & 5 \\ 0 & 3 & 0 \end{bmatrix}$$
$$T([4, -3, 1]) = (A \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix})^T = [7, \ 21, \ -9]$$

- 3. (5 points) Given $\vec{u} = [1, 3, -1], \ \vec{v} = [-2, 4, 1] \text{ and } \vec{w} = [13, -11, -8].$
 - Is $\vec{w} \in sp(\vec{u}, \vec{v})$? (<u>Yes</u> / No).

If so, write \vec{w} in the linear combination of \vec{v} and \vec{u} : $\vec{w} = 3\vec{u} - 5\vec{u}$.

- 4. (5 points) Given two vectors $\vec{v} = [3, x, -1, 1]$ and $\vec{u} = [6, 2, -2, y]$. Find all $x, y \in \mathbb{R}$ so that
 - (a) \vec{v}, \vec{u} are parallel. x = 1, y = 2.
 - (b) \vec{v}, \vec{u} are perpendicular. $x \in \mathbb{R}, y = -2x 20$.

Solution :

(a) Since the first component of \vec{v} is 4 and the first component of \vec{u} is 8, we know that \vec{v}, \vec{u} are parallel if $2\vec{v} = \vec{u}$. Thus x = 1, y = 2.

(b) It is fact that \vec{v}, \vec{u} perpendicular if $\vec{v} \cdot \vec{u} = 0$. Since $\vec{v} \cdot \vec{u} = 18 + 2x + 2 + y, \vec{v}, \vec{u}$ perpendicular if 20 + 2x + y = 0.

- 5. (5 points) Suppose that T is a linear transformation with standard matrix representation A, and that A is a 15×9 matrix such that the nullspace of A has dimension 3.
 - (a) What is the dimension of the range of T? 6.
 - (b) What is the dimension of the kernel of T?_____.

Solution :

Since the nullity of A is equal to 3, the rank of A is equal to 9-3=6. Thus the dimension of the kernel of T is 3, and the dimension of the range of T is 6.

6. (10 points) Consider the given linear system: $\begin{cases} x_1 - 2x_2 &+ x_4 = 1 \\ x_1 &- x_3 + 2x_4 = 0 \\ -2x_2 + x_3 + x_4 = -6 \end{cases}$ 0 1 1 $\begin{array}{cc} -1 & 2 \\ 1 & 1 \end{array}$ (a) Write its associated augmented matrix. 0 0 1 -60 1 0 -10 7 (b) Reduce the matrix to its reduced row-echelon form (rref). 0 1 -1/2 0 5/40 0 0 1 -7/21 1/2(c) Find the homogeneous solution of the linear system . r $r \in \mathbb{R}$ 1 0 $\overline{7}$ 1 1/25/4(d) Find the general solution of the linear system . +r $r \in \mathbb{R}$ 0 1 7/20

7. (10 points) Let a, b and c be scalar such that $abc \neq 0$. Prove that the plane ax + by + cz = 0 is a subspace of \mathbb{R}^3 .

Solution :

 $1-6 \ \#12$

8. (10 points) Assume the the matrix A can be row reduces to H, please answer the following questions.

$$A = \begin{bmatrix} 3 & 1 & -3 & 8 & 3 & 7 \\ -2 & -1 & 1 & -5 & 0 & -3 \\ 1 & 3 & 7 & 0 & 9 & 13 \\ 2 & 5 & 11 & 1 & -1 & 6 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & 1 \\ 0 & 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) the **rank** of matrix A, is $\underline{3}$.
- (b) a basis for the row space of A is [1, 0, -2, 3, 0, 1], [0, 1, 3, -1, 0, 1], [0, 0, 0, 1, 1].
- (c) a basis for the **column space** of A is

$$\begin{bmatrix} 3\\-2\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\3\\5 \end{bmatrix}, \begin{bmatrix} 3\\0\\9\\-1 \end{bmatrix}$$

(d) a basis for the **nullspace** of A is

$$\begin{bmatrix} 2 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

9. (10 points) Let $\vec{v_1}$ and $\vec{v_2}$ be two vectors in \mathbb{R}^n . Prove that $sp(\vec{v_1}, \vec{v_1} + \vec{v_2}) = sp(\vec{v_1} - \vec{v_2}, \vec{v_1} + \vec{v_2})$.

Solution :

 $1.6 \ \# 45$

Clearly, $\vec{v}_1 = \frac{1}{2}[(\vec{v}_1 - \vec{v}_2) + (\vec{v}_1 + \vec{v}_2)]$ and $\vec{v}_1 + \vec{v}_2 = 0 \cdot (\vec{v}_1 - \vec{v}_2) + 1 \cdot (\vec{v}_1 + \vec{v}_2)$. Hence $\vec{v}_1, \vec{v}_1 + \vec{v}_2 \in sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2)$ and therefore $sp(\vec{v}_1, \vec{v}_1 + \vec{v}_2) \subset sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2)$.

Also, $\vec{v}_1 + \vec{v}_2 = 0 \cdot \vec{v}_1 + 1 \cdot (\vec{v}_1 + \vec{v}_2)$ and $\vec{v}_1 - \vec{v}_2 = 1 \cdot \vec{v}_1 - 1 \cdot (\vec{v}_1 + \vec{v}_2)$. Hence $\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2 \in sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2)$ and therefore $sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2) \subset sp(\vec{v}_1, \vec{v}_1 + \vec{v}_2)$.

Thus $sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2) = sp(\vec{v}_1, \vec{v}_1 + \vec{v}_2)$

10. (10 points) Prove that the given relation holds for all matrices for which the expressions are defined.

$$(AB)^T = B^T A^T$$

Solution :

 $1\text{-}3 \ \#32$

11. (15 points) Suppose the complete solution to the equation

$$A\vec{x} = \begin{bmatrix} 2\\4\\2 \end{bmatrix} \quad \text{is} \quad \vec{x} = \begin{bmatrix} 2\\0\\0 \end{bmatrix} + r \begin{bmatrix} 1\\1\\0 \end{bmatrix} + s \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

(a) The dimension of the row space of $A = _$

(b) What is the matrix A? Answer:
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$
.

(c) Find all possible \vec{b} so that $A\vec{x} = \vec{b}$ can be solved. Answer: $\vec{b} = -r \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, for $r \in \mathbb{R}$.

12. (5 points) Let A is an $n \times n$ matrix and $A\vec{x} = \vec{b}$ has solution for any $\vec{b} \in \mathbb{R}^n$, then the nullity of A is <u>0</u>.

- 13. (15 points) Let A is an $m \times n$ matrix of rank r. Suppose $A\vec{x} = \vec{b}$ has no solution for some $\vec{b} \in \mathbb{R}^n$ and has infinity many solution for some other $\vec{b} \in \mathbb{R}^n$, then:
 - (a) Is it possible that the nullspace of A contains only the zero vector? (Yes / No), and why?

(b) Is it possible that the column space of A is all of \mathbb{R}^m ? (Yes / No), and why?

(c) Can there be a vector $\vec{b} \in \mathbb{R}^n$ for which $A\vec{x} = \vec{b}$ has exactly one solution? (Yes / No), and why?

- 14. (10 points) Circle each of the following True or False and then give a counterexample (反例) for the false statement.
 - 1. True **False** For all positive integers m and n, the nullity of an $m \times n$ matrix might be any number from 0 to n.

Solution :

For any 3×8 matrix, it could never have the nullity equals 0.

2. True **False** The magnitude of $\vec{v} + \vec{w}$ must be at least as large as the magnitude of either \vec{v} or \vec{w} in \mathbb{R}^n .

Solution :

Let $\vec{v} = [1, 0], \ \vec{w} = [-1, 0], \ \text{then} \ \|\vec{v} + \vec{w}\| = 0 < 1 = \|\vec{v}\| = \|\vec{w}\|$

3. **True** False If T is a linear transformation, then $T(\vec{0}) = 0$.

Solution: 2-3 p.144, 我上課有證!

4. True **False** If $A^2 = I$, then $A = \pm I$.

Solution :

$$\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right)^2 = I$$

5. True **False** Every function mapping \mathbb{R}^n into \mathbb{R}^m is a linear transformation.

Solution :

Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ with $T([x, y]) = [\cos(x) + y, 3x, 6y]$. T is NOT a linear transformation since $T(2[\pi, 0]) \neq 2T([\pi, 0])$.

學號: _____, 姓名: _____, 以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
Points:	10	10	5	5	5	10	10	10	10	10	15	5	15	10	130
Score:															