應數一線性代數 2024 春, 期中考

本次考試共有 10 頁 (包含封面),有 10 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一及最後一頁填上姓名學號,忘記填寫扣十分!
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。
 沒有計算過程,就算回答正確答案也不會得到滿分。
 答卷請清楚乾淨,儘可能標記或是框出最終答案。

高師大校訓:**誠敬宏遠**

誠 ,一生動念都是誠實端正的。	敬 ,就是對知識的認真尊重。
宏 ,開拓視界,恢宏心胸。	遠 ,任重致遠,不畏艱難。

請尊重自己也尊重其他同學,考試時請勿東張西望交頭接耳。

1. (10 points) Let

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

Is A orthogonal diagonalizable? (Yes / No) .

why? _____

2. (10 points) Let

$$A = \begin{bmatrix} 1 & 2 & 6 \\ 2 & 0 & -4 \\ 6 & -4 & 3 \end{bmatrix}$$

Is A orthogonal diagonalizable? (Yes / No) .

why? _____

應數一線性代數	期中考 - Page 4 of 10	04/11/2024
3. (10 points) Solve the system $\boldsymbol{\boldsymbol{\varsigma}}$	$x_1' = 4x_1 - 2x_2 + x_3$	
	$x_2' = -2x_1 + 3x_2 - 2x_3$	
	$x_3' = x_1 - 2x_2 + 4x_3$	

. .

Answer: _____

4. (15 points) Use Gram-Schmidt process to find an orthonormal basis for the subspace W of ℝ⁴ spanned by [1, 0, 1, 0], [1, 1, -1, 0], [1, 1, 0, 1] and then use it to find the QR-factorization of A, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer

Q=_____, R=_____, an orthonormal basis of W=_____

應數一線性代數期中考- Page 6 of 1004/11/20245. (10 points) Find the formula for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that reflects in the line 3x - 7y = 0.

Answer: T([x, y]) =_____

 應數一級性代数
 期中考
 - Page 7 of 10

 6. (10 points) Find the projection of [2, 4, 1] on the plane P: 2x - y - 2z = 0

Answer: the projection = _____, and the P^{\perp} = _____.

7. (10 points) Show that orthogonal matrices preserve the dot product of vectors. (i.e. $(A\vec{x} \cdot A\vec{y} = \vec{x} \cdot \vec{y})$.)

8. (10 points) Let A is an $n \times n$ invertible matrix and if λ is an eigenvalue of A with \vec{v} as a corresponding eigenvector. Prove that (a) $\lambda \neq 0$ and (b) $1/\lambda$ is an eigenvalue of A^{-1} with \vec{v} as a corresponding eigenvector.

- 9. (15 points) Circle True or False and then prove (證明) or disprove (反駁) it. Read each statement in original Greek before answering. *** 只圈對錯,沒有論述一律不給分 ***
 - (a) True False Every $n \times k$ matrix A has a factorization A = QR, where the column vectors of Q form an orthonormal set and R is an invertible $k \times k$ matrix.

(b) True False Every vector in a vector space V is an eigenvector of the identity transformation of V into V.

(c) True False Given W is a subspace of \mathbb{R}^n . If a vector \vec{v} belongs to both W and W^{\perp} , then $\vec{v} = \vec{0}$.

10. (10 points) Let W be a subspace of \mathbb{R}^n and let \vec{b} be a vector in \mathbb{R}^n . Prove that there is one and only one vector \vec{p} in W such that $\vec{b} - \vec{p}$ is perpendicular($\underline{\pm}\underline{a}$) to every vector in W.

學號: _____, 姓名: _____, 以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	10	10	10	15	10	10	10	10	15	10	110
Score:											