應數一線性代數 2024 秋, 第一次期中考 解答

本次考試共有 9 頁 (包含封面),有 12 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓:**誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

- 1. (5 points) Given $\vec{u} = [-1, 1, 2], \ \vec{v} = [4, 2, -1] \text{ and } \vec{w} = [5, 7, 4].$
 - Is $\vec{w} \in sp(\vec{u}, \vec{v})$? (<u>Yes</u> / No).

If so, write \vec{w} in the linear combination of \vec{v} and \vec{u} : $\vec{w} = 3\vec{u} + 2\vec{v}$.

- 2. (5 points) Given two vectors $\vec{v} = [x, 2, -1, 1]$ and $\vec{u} = [1, 6, -2, y]$. Find all $x, y \in \mathbb{R}$ so that
 - (a) \vec{v}, \vec{u} are parallel. <u>None</u>.
 - (b) \vec{v}, \vec{u} are perpendicular. $x \in \mathbb{R}, y = -x 14$.

Solution :

(a) Since the second and third components of \vec{v} is [2, -1] and the second and third components of \vec{u} is [6, -2], we know that \vec{v}, \vec{u} are never parallel.

(b) It is fact that \vec{v}, \vec{u} perpendicular if $\vec{v} \cdot \vec{u} = 0$. Since $\vec{v} \cdot \vec{u} = x + 12 + 2 + y, \vec{v}, \vec{u}$ perpendicular if x + 14 + y = 0.

3. (10 points) (a) Find the inverse of the matrix A, if it exists, and (b) express the inverse matrix as a product of elementary matrices. $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ Answer: (a) $A^{-1} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$ (b) $A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ (答案不唯一)

4. (10 points) Describe all possible values for the unknowns x_i so that the matrix equation is valid.

$$\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 1 \end{bmatrix}$$

Solution :

1-4, problem 35. $\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$

5. (10 points) Find all values of r for which A and B are commutes.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & r \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

Answer: r = 1

6. (10 points) Let a, b and c be scalar such that $abc \neq 0$. Prove that the plane ax + by + cz = 0 is a subspace of \mathbb{R}^3 .

Solution :

1-6 #12

- 2024/10/31
- 7. (10 points) Assume the matrix A can be row reduces to H, please answer the following questions.

$$A = \begin{bmatrix} 2 & 4 & 5 & 5 & 8 & 7 \\ -2 & -4 & -3 & 3 & 8 & 0 \\ 2 & 4 & 7 & 6 & 10 & -1 \\ 1 & 2 & 4 & 7 & 13 & 2 \end{bmatrix}, H = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) the **rank** of matrix A, is $\underline{4}$.
- (b) a basis for the **row space** of A is **[1, 2, 0, 0, -1, 0]**, **[0, 0, 1, 0, 0, 0]**, **[0, 0, 0, 1, 2, 0]**, **[0, 0, 0, 0, 0, 1]**
- (c) a basis for the **column space** of A is

$$\begin{bmatrix} 2\\-2\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} 5\\-3\\7\\4\\4 \end{bmatrix}, \begin{bmatrix} 5\\3\\6\\7\\7\\7 \end{bmatrix}, \begin{bmatrix} 7\\0\\-1\\2 \end{bmatrix}$$

.

•

(d) a basis for the **nullspace** of A is

$$\begin{bmatrix} -2\\1\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\0\\-2\\1\\0\end{bmatrix}$$

.

- 8. (10 points) Use the previous question ($\hat{\mathbf{m}}$ - $\mathbf{\Xi}$), let $\vec{a}_1 = [2, -2, 2, 1]$, $\vec{a}_2 = [4, -4, 4, 2]$, $\vec{a}_3 = [5, -3, 7, 4]$, $\vec{a}_4 = [5, 3, 6, 7]$, $\vec{a}_5 = [8, 8, 10, 13]$, $\vec{a}_6 = [7, 0, -1, 2]$
 - (a) Is $\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$ a linear independent set? (Yes / No).
 - (b) Is $\{\vec{a}_1, \vec{a}_2\}$ a linear independent set?? (Yes / No) .
 - (c) Is $\{\vec{a}_4, \vec{a}_5\}$ a linear independent set?? (<u>Yes</u> / No) .
 - (d) Is $\{\vec{a}_1, \vec{a}_5, \vec{a}_6\}$ a linear independent set? (Yes / No) .
 - (e) Is $\{\vec{a}_2, \vec{a}_4, \vec{a}_5\}$ a linear independent set? (Yes / No).
 - p.s. 記得每小題要分開給理由!!

9. (15 points) Suppose the complete solution to the equation

$$A\vec{x} = \begin{bmatrix} 4\\2\\5 \end{bmatrix} \quad \text{is} \quad \vec{x} = \begin{bmatrix} 2\\0\\0 \end{bmatrix} + r \begin{bmatrix} -2\\1\\0 \end{bmatrix} + s \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

(a) The dimension of the row space of $A = \underline{1}$

Solution :

Since \vec{x} and $\begin{bmatrix} 4\\2\\5 \end{bmatrix}$ are both 3×1 matrices, we know that A is a 3×3 matrix.

 \vec{x} has two free variables, thus the nullity of A is 2. Therefore, the rank of A is 1.

E.

(b) What is the matrix A? Answer:
$$A = \begin{bmatrix} 2 & 4 & 0 \\ 1 & 2 & 0 \\ 0.5 & 5 & 0 \end{bmatrix}$$

Solution :

Method 1:

$$\vec{x} = \begin{bmatrix} 2-2r\\r\\s \end{bmatrix} \Rightarrow \begin{bmatrix} A & 4\\2\\5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 2\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} A & 4\\2\\5 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 0 & 4\\1 & 2 & 0 & 2\\0.5 & 5 & 0 & 5 \end{bmatrix}$$

Method 2:

1. r = s = 0:

1.
$$r = s = 0$$
:

$$A\vec{x} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0.5 \end{bmatrix}$$
2. $r = 1, s = 0$:

$$A\vec{x} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix}$$

3.
$$r = 1, s = 1$$
:

$$A\vec{x} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} a_{12} + a_{13} \\ a_{22} + a_{23} \\ a_{32} + a_{33} \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(c) Find all possible \vec{b} so that $A\vec{x} = \vec{b}$ can be solved. Answer: $\vec{b} = \begin{bmatrix} 4\\2\\5 \end{bmatrix}$, for $r \in \mathbb{R}$.

Solution :

 $\overrightarrow{b} \in col(A)$

10. (10 points) Prove that if A^3 is invertible, then A^2 is invertible.

Solution :

1-5, problem 23f.

11. (10 points) Let W_1 and W_2 be two subspace of \mathbb{R}^n . Prove that their intersection $W_1 \cap W_2$ is also a subspace.

Solution :

1-6, problem 47

Clearly $W_1 \cap W_2$ is nonempty; it contains 0.

Let $\vec{v}, \vec{w} \in (W_1 \cap W_2)$. Then $\vec{v}, \vec{w} \in W_1$ and $\vec{v}, \vec{w} \in W_2$, so $\vec{v} + \vec{w} \in W_1$ and $\vec{v} + \vec{w} \in W_2$ since W_1 and W_2 are subspaces.

Thus $\vec{v} + \vec{w} \in (W_1 \cap W_2)$. Similarly, $r\vec{v} \in W_1$ and $r\vec{v} \in W_2$. Since W_1 and W_2 are subspaces. Thus $r\vec{v} \in (W_1 \cap W_2)$. Thus W_1 and W_2 are subspaces. Thus $W_1 \cap W_2$ is a subspace of \mathbb{R}^n

- 12. (10 points) Prove or disprove (反證) the following statement.
 - (a) Let \vec{v}, \vec{w} be column vectors in \mathbb{R}^n and let A be an $n \times n$ matrix. If $A\vec{v}$ and $A\vec{w}$ are linearly independent, then \vec{v} and \vec{w} are linearly independent

Solution:

It is true! 2-1, problem 36.

(b) Let \vec{v}, \vec{w} be column vectors in \mathbb{R}^n and let A be an $n \times n$ matrix. If \vec{v} and \vec{w} are linearly independent, then $A\vec{v}$ and $A\vec{w}$ are linearly independent

$\mathbf{Solution}:$

It is false! Compare with 2-1, problem 34, the hypothesis missing the condition that A is invertible.

學號:,	姓名:,	以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	5	5	10	10	10	10	10	10	15	10	10	10	115
Score:													