應數一線性代數 2024 秋, 期末考

本次考試共有 9 頁 (包含封面),有 12 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓:**誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

1. (10 points) Find the coordinate vector of the given vector relative to the indicated ordered basis. $x + x^4$ in P_2 relative to $(1, (x + 1), (x + 1)^2, (x + 1)^3, (x + 1)^4)$.

Answer: the coordinate vector is $_$

2. (10 points) Find the area of the parallelogram (平行四邊形) in \mathbb{R}^3 determined by the vectors [2,-3,5] and [3,-2,1]

Answer: area = ____

3. (10 points) Let $T : P_2 \to P_3$ be defined by T(p(x)) = (x-2)p(x+1), the ordered basis for P_2 is $B = (x^2 - x, x^2 + x, 1)$ and the ordered basis for P_3 is $B' = (x^3, x^2, x, 1)$. Fine the standard matrix representation A of T relative to the ordered bases B and B'.

Answer: (a) *A* _____

(b) Given p(x) so that $p(x)_B = [1, 3, 2]$, find p(x) =_____, and T(p(x)) =______,

4. (10 points) Find the determinant of the given matrix.

$$\begin{bmatrix} 1 & 2 & 0 & -1 & 4 & 4 \\ 1 & 2 & 0 & -1 & 5 & 4 \\ 2 & 3 & 1 & 4 & 2 & 4 \\ 4 & 6 & 0 & 8 & 2 & 4 \\ -1 & 1 & 0 & -1 & 3 & -5 \\ 0 & 0 & 0 & 0 & 5 & 6 \end{bmatrix}$$

Answer: det(A) = _____

5. (10 points)

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 3 & 2 & 1 \\ 1 & 5 & -1 \end{bmatrix}$$

The inverse of A =______, and the adjoint matrix of A =______

6. (10 points) Determine the set S_1 of all functions f such that f(0) = 0 is a subspace in the vector space F of all functions mapping \mathbb{R} into \mathbb{R} .

Answer: Is S_1 a subspace of F?

- 7. Consider the set \mathbb{R}^2 , with the addition defined by $[x, y] \oplus [a, b] = [x + a + 2, y + b]$, and with scalar multiplication defined by $r \otimes [x, y] = [rx + r 2, ry]$.
 - a. Is this set a vector space? (Yes / No) *Hint:* Show by verifying the closed under two operations, A1-A4 and S1-S4.
 - b. If the set is a vector space, then find the zero vector and the additive inverse (加法反元素) in this vector space. *Hint:* The zero vector may NOT be the vector [0,0]. **Answer:** the zero vector is ______, for any vectors [x,y], the -[x,y] is ______

8. (10 points) Determinant whether the given 4 points lie in a plane in \mathbb{R}^4 . If so, find its area. If not, find its volume.

A(2, 0, 0, 1), B(3, 1, -1, 2), C(2, 0, 2, 3), D(2, -1, 2, 0)

Answer:

- \Box ABCD are coplanar(共平面), and the area of the quadrilateral (四邊形) is _____
- \Box ABCD are NOT coplanar, and the volume of the tetrahedron(四面體) is _____

9. (10 points) Let $G = \{[x, y, z] \mid 0 \le x \le 3, 0 \le y \le 7, -2 \le z \le 5,\}$ Let $T : \mathbb{R}^3 \to \mathbb{R}^5$ be given by T([x, y, z]) = [2x + 3y, x - y, 2y + z, x + z, x - y - z]. Find the volume of the image of G in \mathbb{R}^5 under the transformation T.

Answer: _

10. (10 points) Determine the dimension of the given set S. Then reduce the given set to be a basis for sp(S).

 $S = sp(x^2 - 2, x^2 + 1, 4x, 2x - 3)$ is a subspece in a vector space P.

Answer: $\dim(S) =$ ______A basis for S is _____

11. (10 points) Let $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$. Show that $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.

- 12. (20 points) Prove or disprove (反證) the following statement.
 - (a) True False If T and \tilde{T} are <u>different</u> linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\vec{e_i}) = \tilde{T}(\vec{e_j})$ for some standard basis vector $\vec{e_i}$ of \mathbb{R}^n .

(b) True False Let $T : \mathbb{R}^n \to \mathbb{R}^m$ and $\hat{T} : \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations. Prove directly from its definition that $(\hat{T} \circ T) : \mathbb{R}^n \to \mathbb{R}^k$ is also a linear transformation.

(c) True False If S is independent, each vector in V can be expressed uniquely as a linear combination of vectors in S.

(d) True False The determinant of a 3×3 matrix is zero if the points in \mathbb{R}^3 given by the rows of the matrix lie in a plane.

學號:	,姓名:	,以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	10	10	10	10	10	10	0	10	10	10	10	20	120
Score:													