應數一線性代數 2024 秋, 期末考 解答

本次考試共有 9 頁 (包含封面),有 12 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓: **誠敬宏遠**

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

簽名: ______

1. (10 points) Find the coordinate vector of the given vector relative to the indicated ordered basis. $x + x^4$ in P_2 relative to $(1, (x + 1), (x + 1)^2, (x + 1)^3, (x + 1)^4)$.

Answer: the coordinate vector is **[0, -3, 6, -4, 1]**

Solution :

	0	0	0	0	1	1		[1	0	0	0	0	0]
	0	0	0	1	4	0		0	1	0	0	0	-3
rref(0	0	1	3	6	0) =	0	0	1	0	0	6
	0	1	2	3	4	1		0	0	0	1	0	-4
	1	1	1	1	1	0		0	0	0	0	1	1

2. (10 points) Find the area of the parallelogram(平行四邊形) in \mathbb{R}^3 determined by the vectors [2, -3, 5] and [3, -2, 1]

Answer: area = $\sqrt{243} = 9\sqrt{3}$

Solution :

$$By \ 4 - 1$$

Let $\vec{a} = [2, -3, 5]$ and $\vec{b} = [3, -2, 1]$, then the area is $\|\vec{a} \times \vec{b}\|$.

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & 5 \\ 3 & -2 & 1 \end{vmatrix} = \vec{i} \begin{vmatrix} -3 & 5 \\ -2 & 1 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & 5 \\ 3 & 1 \end{vmatrix} + \vec{k} \begin{vmatrix} 2 & -3 \\ 3 & -2 \end{vmatrix} = [7, 13, 5]$$

The length of [7, 13, 5] is $\sqrt{243}$

By 4-4

Let

$$A = \begin{bmatrix} 2 & 3 \\ -3 & -2 \\ 5 & 1 \end{bmatrix}$$
$$\det(A^T A) = \det(\begin{bmatrix} 38 & 17 \\ 17 & 14 \end{bmatrix}) = 243$$

The volume of the 2-box is $\sqrt{243}$.

- 2024/12/26
- 3. (10 points) Let $T : P_2 \to P_3$ be defined by T(p(x)) = (x-2)p(x+1), the ordered basis for P_2 is $B = (x^2 x, x^2 + x, 1)$ and the ordered basis for P_3 is $B' = (x^3, x^2, x, 1)$. Fine the standard matrix representation A of T relative to the ordered bases B and B'.

Answer: (a)
$$A$$

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ -2 & -4 & 1 \\ 0 & -4 & -2 \end{bmatrix}$$

(b) Given p(x) so that $p(x)_B = [1, 3, 2]$, find $p(x) = \underline{4x^2 + 2x + 2}$, and $T(p(x)) = \underline{4x^3 + 2x^2 - 12x - 16}$

Solution :

Similar with 3-4 exaqmple 9.

$$\begin{split} T(x^2 - x) &= (x - 2)[(x + 1)^2 - (x + 1)] = x^3 - x^2 - 2x, & T(x^2 - x)_{B'} = [1, -1, -2, 0] \\ T(x^2 + x) &= (x - 2)[(x + 1)^2 + (x + 1)] = x^3 + x^2 - 4x - 4, & T(x^2 + x)_{B'} = [1, 1, -4, -4] \\ T(1) &= (x - 2)[1] = (x - 2), & T(1)_{B'} = [0, 0, 1 - 2] \\ A &= \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ -2 & -4 & 1 \\ 0 & -4 & -2 \end{bmatrix} \\ T(p(x))_{B'} &= Ap(x)_B = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ -2 & -4 & 1 \\ 0 & -4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ -12 \\ -16 \end{bmatrix} \\ p(x)_B &= [1, 3, 2], \Rightarrow p(x) = 1(x^2 - x) + 3(x^2 + x) + 2(1) = 4x^2 + 2x + 2 \\ T(p(x))_{B'} &= \begin{bmatrix} 4 \\ 2 \\ -12 \\ -16 \end{bmatrix}, \Rightarrow T(p(x)) = 4x^3 + 2x^2 + (-12)x + (-16)1 = 4x^3 + 2x^2 - 12x - 16 \end{split}$$

4. (10 points) Find the determinant of the given matrix.

Γ	1	2	0	-1	4	4]
	1	2	0	-1	5	4
	2	3	1	4	2	4
	4	6	0	8	2	4
	-1	1	0	-1	3	-5
		0	0	$-1 \\ -1 \\ 4 \\ 8 \\ -1 \\ 0$	5	6

Answer: det(A) = -192

 $\mathbf{Solution:}$

這題在寫的時候要特別注意書寫的符號,如果從頭到尾都沒用 determinant 的符號,先扣兩分。 除了注意 0 多的行或列在哪之外,如果有注意到第一個 row 跟第二個 row 長得幾乎一樣,那就算得更快了。 5. (10 points) $A = \begin{bmatrix} 0 & -2 & 1 \\ 3 & 2 & 1 \\ 1 & 5 & -1 \end{bmatrix}$ The inverse of A = $\frac{1}{5} \begin{bmatrix} -7 & 3 & -4 \\ 4 & -1 & 3 \\ 13 & -2 & 6 \end{bmatrix}$, and the adjoint matrix of A = $\begin{bmatrix} -7 & 3 & -4 \\ 4 & -1 & 3 \\ 13 & -2 & 6 \end{bmatrix}$ Solution: 4-3det(A) = 5. 答案可以不用化簡。

6. (10 points) Determine the set S_1 of all functions f such that f(0) = 0 is a subspace in the vector space F of all functions mapping \mathbb{R} into \mathbb{R} .

Answer: Is S_1 a subspace of F? <u>Yes</u>

$\mathbf{Solution}:$

3 - 2

Let $f(x), g(x) \in S_1$, then $(f \oplus g)(0) = f(0) + g(0) = 0 + 0 = 0$. Thus $(f \oplus g)(x) \in S_1$. It is closed under vector addition.

Let $r \in \mathbb{R}$, $(r \otimes f)(0) = r \times 0 = 0$. Thus $(r \otimes f)(x) \in S_1$. It is closed under scalar multiplication.

Thus S_1 is a subspace of F.

- 7. Consider the set \mathbb{R}^2 , with the addition defined by $[x, y] \oplus [a, b] = [x + a + 2, y + b]$, and with scalar multiplication defined by $r \otimes [x, y] = [rx + r 2, ry]$.
 - a. Is this set a vector space? (Yes / No) Hint: Show by verifying the closed under two operations, A1-A4 and S1-S4.
 - b. If the set is a vector space, then find the zero vector and the additive inverse (加法反元素) in this vector space. *Hint:* The zero vector may NOT be the vector [0,0]. **Answer:** the zero vector is _____, for any vectors [x,y], the -[x,y] is _____

Solution :

Method 1

Assume it is a vector space.

For any $\vec{v} \in \mathbb{R}^2$, $0 \otimes \vec{v}$ must be $\vec{0}$. (上課有證) Thus $\vec{0} = 0 \otimes [x, y] = [-2, 0]$.

For any $\vec{v} \in \mathbb{R}^2$, $(-1) \otimes \vec{v}$ must be $-\vec{v}$. (上課有證) Thus $-[x,y] = (-1) \otimes [x,y] = [-x-3,-y]$.

However, $[x, y] \oplus (-[x, y]) = [x, y] \oplus [-x - 3, -y] = [x + (-x - 3) + 2, y + (-y)] = [-1, 0] \neq [-2, 0] = \vec{0}$. Contradiction!

Thus it is NOT a vector space.

$Method \ 2$

Check property S3: for $r, s \in \mathbb{R}$ and $\vec{v} = [x, y] \in \mathbb{R}^2$, $r \otimes (s \otimes \vec{v}) = (rs) \otimes \vec{v}$. LHS: $r \otimes (s \otimes \vec{v}) = r \otimes (s \otimes [x, y]) = r \otimes [sx + s - 2, sy] = [r(sx + s - 2) + r - 2, rsy] = [rsx + rs - r - 2, rsy]$. RHS: $(rs) \otimes \vec{v} = (rs) \otimes [x, y] = [(rs)x + (rs) - 2, (rs)y]$. Since LHS \neq RHS. It is NOT a vector space.

Method 3

Check property S4: for $\vec{v} = [x, y] \in \mathbb{R}^2$, $1 \otimes \vec{v} = \vec{v}$. LHS: $1 \otimes \vec{v} = 1 \otimes [x, y] = [x + 1 - 2, y] = [x - 1, y]$. RHS: $\vec{v} = [x, y]$. Since LHS \neq RHS. It is NOT a vector space. 8. (10 points) Determinant whether the given 4 points lie in a plane in \mathbb{R}^4 . If so, find its area. If not, find its volume.

A(2,0,0,1), B(3,1,-1,2), C(2,0,2,3), D(2,-1,2,0)

Answer:

 \checkmark ABCD are coplanar(共平面), and the area of the quadrilateral (四邊形) is N/A.

✓ ABCD are NOT coplanar, and the volume of the tetrahedron(四面體) is $\frac{\sqrt{48}}{6}$.

Solution :

 $\overrightarrow{AB}=[1,1,-1,1], \overrightarrow{AC}=[0,0,2,2], \overrightarrow{AD}=[0,-1,2,-1]$

$$M = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ -1 & 2 & 2 \\ 1 & 2 & -1 \end{vmatrix}, \quad \det(M^T M) = \begin{vmatrix} 4 & 0 & -4 \\ 0 & 8 & 2 \\ -4 & 2 & 6 \end{vmatrix} = 48$$

So the points are not coplanar and the volume of the Parallelepiped (平行六面體) formed by coterminous (相鄰 邊) edges $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$ is $\sqrt{48}$.

The volume of a tetrahedron (四面體) ABCD formed by coterminous (相鄰邊) edges $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$ is

$$\frac{\text{volume of the Parallelepiped}}{6} = \frac{\sqrt{48}}{6}$$

9. (10 points) Let $G = \{[x, y, z] \mid 0 \le x \le 3, 0 \le y \le 7, -2 \le z \le 5,\}$ Let $T : \mathbb{R}^3 \to \mathbb{R}^5$ be given by T([x, y, z]) = [2x + 3y, x - y, 2y + z, x + z, x - y - z]. Find the volume of the image of G in \mathbb{R}^5 under the transformation T.

Answer: $147\sqrt{204}$

Solution :

Similar with example 7 in section 4-4.

Notice that G is a cuboid with side length are 3, 7, 7, thus the volume of G is $3 \times 7 \times 7 = 147$

By Theorem 4.9, we have the result should be $\sqrt{\det(A^T A)} \cdot V$ where V is the volume of G, and A is the standard matrix representation of T

$$A = \begin{vmatrix} 2 & 3 & 0 \\ 1 & -1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{vmatrix}$$
$$\det(A^T A) = \begin{vmatrix} 7 & 4 & 0 \\ 4 & 15 & 3 \\ 0 & 3 & 3 \end{vmatrix} = 204$$

10. (10 points) Determine the dimension of the given set S. Then reduce the given set to be a basis for sp(S).

 $S = sp(x^2 - 2, x^2 + 1, 4x, 2x - 3)$ is a subspce in a vector space P.

Answer: dim(S) = <u>3</u>. A basis for S is $\{x^2 - 2, x^2 + 1, 4x\}$

Solution :

[1	1	0	0		1	0	0	1]
0	0	4	2	\sim	0	1	0	-1
$\begin{bmatrix} 1\\ 0\\ -2 \end{bmatrix}$	1	0	-3		0	0	1	0.5

11. (10 points) Let $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$. Show that $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.

Solution :

Section 4-1 problem 59. 用定義驗證 本題特別要注意,驗證之前要先定義 $\vec{a}, \vec{b}, \vec{c}$ 的各 components 為何。 另外是向量的符號要用對。習慣上, (a_1, a_2, a_3) 是指一個點, $[a_1, a_2, a_3]$ 才是一個向量。

- 12. (20 points) Prove or disprove (反證) the following statement.
 - (a) **True** False If T and \tilde{T} are <u>different</u> linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\vec{e_i}) = \tilde{T}(\vec{e_j})$ for some standard basis vector $\vec{e_i}$ of \mathbb{R}^n .

Solution :

2-3, problem 29h.

(b) **True** False Let $T : \mathbb{R}^n \to \mathbb{R}^m$ and $\hat{T} : \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations. Prove directly from its definition that $(\hat{T} \circ T) : \mathbb{R}^n \to \mathbb{R}^k$ is also a linear transformation.

Solution : 2-3 #31.

(c) True **False** If S is independent, each vector in V can be expressed uniquely as a linear combination of vectors in S.

Solution : 3-2, 25(g)

(d) True **False**

The determinant of a 3×3 matrix is zero if the points in \mathbb{R}^3 given by the rows of the matrix lie in a plane.

Solution: 4-1 19(e)

學號: ______, 姓名: _____, 以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	10	10	10	10	10	10	0	10	10	10	10	20	120
Score:													