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1. (10 points) Express (v/3 + )% in (1) the form a + bi for a,b are real numbers, (2) the polar
form.

Answer: a= —128 , b= —128y/3  the polar form = 2%(cos _72” + isin _72”)

Solution :

31
(V3 +i)® = 28(£ +i=)® = 28(cos — + isin = )®
2 '3 6 6
4 4 1 —3
= 28(cos Eﬁ + ising) = 25 +i ;f

— —128 +i(—128V/3)

)

Notice that the principal argument 6 should be —7m < 6 < 7.

4 4 —2 —2
2%(cos % + isin %) = 2%(cos Tﬂ + isin Tﬂ)

2. (10 points) Using the Gram-Schmidt process to transform the basis {[1, 1+, 1—i],[1+14, 1—
i, 1]} into an orthogonal basis and then extend it as an orthogonal basis for C3.

Answer: the found orthogonal basis for C? is {7}, U, U3} or {U, Uy, U4}

Solution :

Let @ = [1,1+i,1—4], @ =[1,1+4,1—4.

Let
vtp=d =1, 1+4, 1—1].
Let oL .
Uy - a
Uy = @y — ——0y = =[3+ 56, 3—Ti, 3+ 2i]
V1 - U1 5
Pick d@3 = [1,0,0], and then let
Uy - @ Uy - d: 1
Uy =3 — ——0) — ——0 = —[10, 1+ 3i, — 8+ 6i]
V1 - U1 (L) 21
or use the crossing product
T
U= 1 1+4 1—4=[1-3¢ 1, 1+ 3
1+4 1—4 1
Notice that v3 and o7 are parallel
» 2175
Us =

1+ 3i
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3. (10 points) (1) Find the projection matrix P that project vectors in R® on W which is the

plane 2z — y — 32 = 0.
(2) Given b= [2,7,1], please find the projection by

10 2 6

Answer: P= L |2 13 —3| ,bw= 1[20,46, 2]
6 -3 5

Solution :

From 6-4.

Pick @; = [0, -3, 1] and @y = [1, 2, 0] are two linearly independent vectors in W.

0 1
A= |-3 2|, P=AATA) AT
1

by = Pb
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4. (10 points) Let V be a vector space with ordered bases B = {l;l, b, 53} and B’ = {5’1, v, Eg} If

-1 0 3
OB,B’ = 0 1 -2 s and 17:3b1—2b2+b3
-1 1 1
0
Find the coordinate vector vg = —4
—4
Solution :
From 7-1.
3
U:3b1*2b2+b3 = UB: -2
1

Up = Cp,pUp

5. (10 points) Find all the possible 2 x 2 real matrix that is unitarily diagonalizable.

Solution :

From 9-3 #17

Answer:

Every 2 x 2 real matrix A can written as [(Z Z] Since A is unitarily diagonalizable, A is

normal, i.e. A*A = AA*.

*

ab*ab_i—ab
c d c dl e d

a b
c d
aa+ce ab+ed|  [aa+bb ac+bd
ab+ cd bbb+ dd ac+bd cc+ dd

Hence: (notice that a, b, ¢, d are real.)

(1). aa + c¢ = aa + bb = a® + ¢ = a® + b?

(2). ab+¢d = ac + bd = ab + cd = ac + bd

(3). ab+ cd = @c + bd = ab + cd = ac + bd

(4). bb+dd = cc+dd = V* + d* = * + d?

by (1) and (4), we have b = ¢ or b = —c. And (2)(3) holds for for both cases.

Thus

@b and a0 for a,b,d € R are the only answer.
b d —-b d
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6. (10 points) Let T : R? — R? be a linear transformation and B = ([—1,1], [3,3]) and B’ =

([1,1,1], [2,3,1], [1,2,1]) be ordered bases of R? and R? respectively. Suppose that the matrix
representation Rp g of T is given by

—_

—2
Rpp = |4 2
2 0
Please express T'([1,5]) and T'([5, 1]) as vectors in R3.
Answer: T([1,5])= [24, 38, 14] | and T([5,1])= [-20,-30,-14]

Solution :

By the definition, for every ¥ € R?, we have

(T'(9))p = Rp.pUs

Similarly,

(T(5, 1)) = |-6| = T([5,1]) = [-20, —30, —14]
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7. (10 points) Find a Jordan canonical form and a Jordan basis for the matrix A

(a) Jordan canonical form =

(b) Find the det(A4%°) =

Notice that

[0 0 -1 -1
o 0 0 O
A-bl=1|1 2 2 2
-1 -2 -2 -2
| O 1 1 1
Solution :
rref(A —51) =

rref((A—51)%) =

HRE f
[ 5
0
A=11
—1
0

J

(5550 = 5250

—1

0

o O O O =

o O O o O

(A—=2I):

S O O =

) (A_5I)2 =

o O = O O
o O = O

0
0
0
0
0

o O O O =

0
0
0
0
0

0
b}
2
-2
1

, Jordan basis =

o O O O =

rref((A—51)%) = O, null((A — 51)%) = sp(é, &, €.

~1 -1 0
0 0 0
702 1
-2 3 -1
1 1 5|

ordered column of C, (F—)

0 0 000

0 0 00O
0 1 00 0f,(A=5I)?*=

0 -1 000

0 0 0 0 0
07 [~1
0 0
, null(A—5I) =sp(|—1 0
1 0
0] |1

, null((A — 51)%) = sp(

6’24)61*)6

5 —> by —> b3 —0

Pick 55 — 52, 54 - (A - 5])55 -

S

2 |, by =(A—50)by

o O O O O

oS O O o O

o O O O O

o O O O O

o O O O O
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.

0

Pick by = @, by = (A —51)by = | 2

—2

_1_
—1 0 0 0 0] 5 1 0 0 0]
00 0 0 1 05000
C=12 11 2 0/,J=1]005 10
20 -1 -2 0 0005 1
1 0 0 1 0] 0000 5

A=cCJjCc™!
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8. (20 points) Match each matrix with its corresponding properties. Note that each matrix can

have multiple properties, and some properties may apply to more than one matrix. (EEIEH)

Properties: (a) diagonalizable (b) orthogonal diagonalizable (c) unitarily diagonalizable (d)
symmetric (e) hermitian (f) normal (g) has reduced row-echelon form (h) has jordan canonical

form

23001 1 L ,
(i) . Answer: g, it is a matrix
51 =2 5 1

(-3 5 —20

(i) | 2 0 8 |.Answer: agh, three distinct eigenvalue = (a), not symmetric, not normal

2 1 7

2 10

(iii) |0 2 0. Answer: gh, it is in the Jordan form = Not diagonalizable
00 2
[ 1 142 2-Ti

(iv) |1—2i 3i 0 |. Answer: acefgh, it is a hermitian and not symmetric
2+70 0 -7
(1 9 -3

(v) |9 0 —4|. Answer: abcdefgh, it is a real symmetric
-3 -4 3

N - . .

(vi) 4 il Answer: acfgh, it is normal but not hermitian, not symmetric

—4

Solution :
ZHNFHMRIZEER T » RGERRD - 1R | BEERAEEHNEREH !
(a) (Thm 5.4) A is diagonalizable iff the a.m. = g.m. for each eigenvalue of A.

(b) (Def in p.354) A is orthogonal diagonalizable: 1. A is diagonalizable. 2. needs to check

the eigenspaces are orthogonal.

(1) (6.3 #24) If A is orthogonal diagonalizable then A is symmetric.
(¢) (Thm 9.7) A is unitarily diagonalizable iff A is normal.
(d) (Def 1.11) A is symmetric if AT = A.

(1) (Thm 6.8) If A is real symmetric then A is orthogonal diagonalizable.
(2) (9.3 #19(h)) If A is real symmetric then A is normal.

(e) (Def 9.4) A is hermitian if A* = A.

(1) (9.2 #43(a)) If A hermitian then A is normal.
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(f) (Def 9.5) A is normal if AA* = A*A.

(g) (Def in p.63) A has reduced row-echelon form if A is a matrix.

(h) (Thm 9.9) A has jordan canonical form if A is a square matrix.
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9. (10 points) Prove the following:
(a) Show that every Hermitian matrix is normal.
(b) Show that every unitary matrix is normal.
(c) Show that, if A* = —A, then A is normal.

Solution :
From 9-2 #43

Answer:

(a) Let H are Hermitian matrices, i.e. H*=H. HH* = HH = H*H.
(b) Let U are unitary matrices, i.e. U*U = I, i.e. U ' =U*. UU*=1=U*U.
() A*=—-A A*A=(—A)A=—-AA = A(—A) = AA*.

Bk , 12 , UTHRBARIEER
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