

應數一線性代數 2025 秋, 第一次期中考 **解答**

學號: _____, 姓名: _____

本次考試共有 10 頁 (包含封面)，有 11 題。如有缺頁或漏題，請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- **不可翻閱課本或筆記。**
- 計算題請寫出計算過程，閱卷人員會視情況給予部份分數。沒有計算過程，就算回答正確答案也不會得到滿分。答卷請清楚乾淨，儘可能標記或是框出最終答案。
- 書寫空間不夠時，可利用試卷背面，但須標記清楚。

高師大校訓：**誠敬宏遠**

誠: 一生動念都是誠實端正的。 **敬**: 就是對知識的認真尊重。
宏: 開拓視界，恢宏心胸。 **遠**: 任重致遠，不畏艱難。

請簽名保證以下答題都是由你自己作答的，並沒有得到任何的外部幫助。

簽名: _____

1. (a) (4 points) If $A = [a_{i,j}]$ is a $m \times n$ matrix and $B = [b_{i,j}]$ is a $n \times r$ matrix. Define what it means for the matrix product $C = AB$.

Solution :

Definition 1.8 in Section 1.3.

(b) (4 points) Define what it means for two vectors $\vec{v}, \vec{u} \in \mathbb{R}^n$ are perpendicular ($\vec{v} \perp \vec{u}$).

Solution :

Definition 1.7 in Section 1.2.

(c) (4 points) Define what it means for a $n \times n$ matrix A is invertible.

Solution :

Definition 1.15 in Section 1.5.

(d) (4 points) Define what it means for a set of vectors to be linearly independent.

Solution :

Definition 2.1 in Section 2.1.

(e) (4 points) If W is a subspace of \mathbb{R}^n , define the dimension of W .

Solution :

Definition 2.2 in Section 2.1.

2. (10 points) (a) Find the inverse of the matrix A , if it exists, and (b) express the inverse matrix as a product of elementary matrices.

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 0 & -2 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$

Answer: (a) $A^{-1} = \frac{1}{3} \begin{bmatrix} 4 & 6 & 7 \\ 1 & 0 & 1 \\ 2 & 3 & 2 \end{bmatrix}$

(b) $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2/3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (答案不唯一)

3. (5 points) Classify $\vec{v} = [4, 1, 2, 1, 6]$ and $\vec{u} = [8, 2, 4, 2, -5]$ are parallel, perpendicular, or neither.

Answer: neither

4. (10 points) Let $W = \{[a_1, a_2, a_3, a_4, a_5] \in \mathbb{R}^5 \mid a_1 + a_2 + a_3 + a_4 + a_5 = 0\}$. Show that W is a subspace of \mathbb{R}^5 over \mathbb{R} .

Solution :

First, we know that W is a subset of \mathbb{R}^5 .

For any $\vec{u}, \vec{v} \in \mathbb{R}^5$, say $\vec{u} = [u_1, u_2, u_3, u_4, u_5], \vec{v} = [v_1, v_2, v_3, v_4, v_5]$.

If $\vec{u}, \vec{v} \in W$, we know that $u_1 + u_2 + u_3 + u_4 + u_5 = 0$ and $v_1 + v_2 + v_3 + v_4 + v_5 = 0$

For any scalar $r, s \in \mathbb{R}$.

$$\begin{aligned} r\vec{u} + s\vec{v} &= r[u_1, u_2, u_3, u_4, u_5] + s[v_1, v_2, v_3, v_4, v_5] \\ &= [ru_1, ru_2, ru_3, ru_4, ru_5] + [sv_1, sv_2, sv_3, sv_4, sv_5] \\ &= [ru_1 + sv_1, ru_2 + sv_2, ru_3 + sv_3, ru_4 + sv_4, ru_5 + sv_5] \end{aligned}$$

Since $(ru_1 + sv_1) + (ru_2 + sv_2) + (ru_3 + sv_3) + (ru_4 + sv_4) + (ru_5 + sv_5) = r(u_1 + u_2 + u_3 + u_4 + u_5) + s(v_1 + v_2 + v_3 + v_4 + v_5) = r(0) + s(0) = 0$, the $r\vec{u} + s\vec{v}$ is in W . Thus W is a subspace of \mathbb{R}^5

5. (10 points) Find all possible scalar s , if exist, such that $[1, 0, 1], [2, s, 3], [1, -s, 0]$ are linearly independent.

Solution :

problem 33 in Section 2.1. (我忘記改數字了)

6. (10 points) For the following linear system:

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 4 \\ 3x_1 - x_2 + 5x_3 = 2 \\ 4x_1 + x_2 + ax_3 = b \end{cases}$$

Find all possible (a, b) such that the above linear system

(a) has unique solutions: $(a, b) = \underline{\underline{a \neq 2, b \in \mathbb{R}}}$.

(b) has no solutions: $(a, b) = \underline{\underline{a = 2, b \neq 6}}$.

(c) has infinitely many solutions: $(a, b) = \underline{\underline{(2, 6)}}$.

Solution :

$$\left[\begin{array}{ccc|c} 1 & 2 & -3 & 4 \\ 3 & -1 & 5 & 2 \\ 4 & 1 & a & b \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & 2 & -3 & 4 \\ 0 & -7 & 14 & -10 \\ 0 & 0 & a-2 & b-6 \end{array} \right]$$

Using the Theorem 1.7 in Section 1.4.

7. (20 points) Assume the the matrix A is row equivalent to H , please answer the following questions.

$$A = \begin{bmatrix} 1 & 1 & 5 & 0 & -9 & 3 & -3 \\ 2 & 4 & 20 & 1 & -28 & 14 & -14 \\ 2 & 4 & 20 & 1 & -31 & 15 & -15 \\ 2 & 3 & 15 & 1 & -27 & 12 & -11 \\ 1 & 2 & 10 & 1 & -18 & 9 & -8 \end{bmatrix}, H = \begin{bmatrix} 6 & 0 & 0 & 0 & 0 & -10 & 16 \\ 0 & 6 & 30 & 0 & 0 & 10 & -16 \\ 0 & 0 & 0 & 6 & 0 & 8 & 4 \\ 0 & 0 & 0 & 0 & 6 & -2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) the **rank** of matrix A , is 4.

(b) a basis for the **row space** of A is

$$\begin{bmatrix} 6 & 0 & 0 & 0 & 0 & -10 & 16 \end{bmatrix}, \begin{bmatrix} 0 & 6 & 30 & 0 & 0 & 10 & -16 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 6 & 0 & 8 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 6 & -2 & 2 \end{bmatrix},$$

(c) a basis for the **column space** of A is

$$\begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 4 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -9 \\ -28 \\ -31 \\ -27 \\ -18 \end{bmatrix}.$$

(d) a basis for the **nullspace** of A is

$$\begin{bmatrix} 0 \\ -30 \\ 6 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 10 \\ -10 \\ 0 \\ -8 \\ 2 \\ 6 \end{bmatrix}, \begin{bmatrix} -16 \\ 16 \\ 0 \\ -4 \\ -2 \\ 0 \end{bmatrix}.$$

(e) Is $[9, 28, 31, 27, 18]$ in $\text{sp}([1, 2, 2, 2, 1], [1, 4, 4, 3, 2], [5, 20, 20, 15, 10], [0, 1, 1, 1, 1])$? If so, find the coefficient of its linear combination. If not, explain why. Answer: No

(f) Is $[3, 14, 15, 12, 9]$ in $\text{sp}([1, 2, 2, 2, 1], [1, 4, 4, 3, 2], [5, 20, 20, 15, 10], [0, 1, 1, 1, 1], [9, 28, 31, 27, 18])$? If so, find the coefficient of its linear combination. If not, explain why. Answer: Yes

Solution :

By Theorem 1.6 in Section 1.4, Since A and H are row equivalent, $A\vec{x} = \vec{0}$ and $H\vec{x} = \vec{0}$ has the same solution set. Let \vec{h}_i be the i^{th} column of H and \vec{a}_i be the i^{th} column of A .

(e) From H , the pivot columns are 1, 2, 4, 5, and the free columns are 3, 6, 7. Thus, column 5 is a pivot column, meaning \vec{h}_5 cannot be written as a linear combination of the previous columns. Hence $[9, 28, 31, 27, 18]^T = -\vec{a}_5$ is *not* in $\text{span}(\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4)$.

(f) Column 6 is a free column in H , so it can be expressed as a linear combination of the pivot columns.

$$\vec{h}_6 = -\frac{5}{3}\vec{h}_1 + \frac{5}{3}\vec{h}_2 + 0\vec{h}_3 + \frac{4}{3}\vec{h}_4 - \frac{1}{3}\vec{h}_5. \text{ (表示不唯一)}$$

Therefore, $[3, 14, 15, 12, 9]^T = \vec{a}_6$ is in $\text{span}(\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4, \vec{a}_5)$ and

$$\vec{a}_6 = -\frac{5}{3}\vec{a}_1 + \frac{5}{3}\vec{a}_2 + 0\vec{a}_3 + \frac{4}{3}\vec{a}_4 - \frac{1}{3}\vec{a}_5. \text{ (表示不唯一)}$$

(d) Similar with 111-1 exam 1 problem 8.

8. (10 points) Let A be an $m \times n$ matrix. Let \vec{e}_j be the $n \times 1$ column vector whose j^{th} component is 1 and whose other components are 0.

(a) Show that $A\vec{e}_j$ is the j^{th} column vector of A .

Solution :

Section 1.3 problem 41 (a). Use the definition of $A\vec{e}_j$ to check.

(b) Prove that if $A\vec{x} = \vec{0}$ for all $\vec{x} \in \mathbb{R}^n$, then $A = O$, the zero matrix.

Solution :

Section 1.3 problem 41 (b)(i). By above part and use $\vec{x} = \vec{e}_j$ for $j = 1, 2, \dots, n$.

9. (10 points) Let A and C be matrices such that the product AC is defined. Whether the column space of AC is contained in the column space of A or C ? Explain your answer.

Answer: the column space of AC is contained in the column space of A .

Solution :

Section 2.2 problem 14, 15.

1. Let A be $m \times n$ matrix. Every vector in the column space of AC is of the form $\vec{v} = (AC)\vec{x}$ for some $\vec{x} \in \mathbb{R}^n$. For every \vec{x} , $(C\vec{x}) \in \mathbb{R}^n$. Then $\vec{v} = A(C\vec{x})$ which is the vector in the column space of A . Thus $\text{colspace}(AC) \subseteq \text{colspace}(A)$.
2. Let A be $m \times n$ matrix, C be $n \times s$ matrix. Thus AC is $m \times s$ matrix.

Since the column vectors of AC are belong to \mathbb{R}^m and the column vectors of C are belong to \mathbb{R}^n , the column space of AC can not be contained in the column space of C .

10. (5 points) Let \vec{v}, \vec{u} and \vec{w} be vectors in \mathbb{R}^n . Prove that

$$\vec{v} \cdot (\vec{u} + \vec{w}) = \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{w}$$

Solution :

Section 1.2, Theorem 1.3 (D.2).

Check by it's definition.

11. (5 points) Prove that $sp(\vec{v}_1, \vec{v}_2) = sp(\vec{v}_1 + \vec{v}_2, \vec{v}_1 - 2\vec{v}_2)$.

Solution :

Similar with Section 1.6, problem 45.

學號: _____, 姓名: _____, 以下由閱卷人員填寫